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Hierarchy of resources for sets of quantum measurements

Implications and Observations
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Reminder: Resource theories for quantum states

E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019)

resourceful states

%

free states -
free operation A\ [0

g

resource—increasing op. [

Ingredients:

1) Free states versus resourceful states

2) Free operations versus resource-increasing operations
3) Quantification of the resource
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Reminder: Resource theories for quantum states

E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019)

resourceful states

%

free states -
free operation A\ [T

g

resource—increasing op. [

Example for convex quantum resource theory: Entanglement

1) Free states: separable; resourceful states: entangled

2) Free operations: LOCC; resource operations: entanglement-creating
3) Quantification: distance measures, robustness measures, concurrence
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Purity as bound for coherence, discord and entanglement

Let purity P(p), coherence C(p), discord D(p), and entanglement
E(p) be distance-based measures for p. Then the following
hierarchy holds, with Xmax(p) = maxy X (UpUT):

P(p) = Cmax(P) > Dmax(p) > gmax(p)

1111

A. Streltsov, H. Kampermann, S. Wélk, M. Gessner, and DB, New J. Phys. 20, 053058 (2018)
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Reminder: Quantum measurement

Positive operator valued measurement (POVM):

Set M = {M,}, with POVM elements M, >0 and ) M, = 1,
acting on d-dim Hilbert space Hg,
index a denotes outcome of measurement, with p(a) =tr[M,o].
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Reminder: Quantum measurement

Positive operator valued measurement (POVM):

Set M = {M,}, with POVM elements M, > 0 and ), M, = 1,
acting on d-dim Hilbert space Hg,

index a denotes outcome of measurement, with p(a) =tr[M,o].

Example: Unambiguous State Discrimination

[¢>
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Sets of measurements (= measurement assemblages)

Several measurement settings x = 1, ..., m, chosen with probability p(z)
(Bell non-locality, steering, QKD...):
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Sets of measurements (= measurement assemblages)
Several measurement settings x = 1, ..., m, chosen with probability p(z)
(Bell non-locality, steering, QKD...):

Measurement assemblage:

M = {Mg,} with My, > 0and }°, M, =1y Vzx

Weighted measurement assemblage:

My, := (M, p) with p(a, ) = p(z)p(alz) = p(z)tr[M,, 0]

Example: Set of measurements for violation of CHSH inequality

o>

/1)
NI

>

0>

1>

- Alice Bob
Questions:

1) How to quantify resources for sets of measurements?
2) Relations between different resources of given set of measurements?
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Resource theories for quantum measurements

P. Skrzypczyk and N. Linden, Phys. Rev. Lett. 122, 140403 (2019);
M. Oszmaniec and T. Biswas, Quantum 3, 133 (2019);

T. Guff et al, J. Phys. A: Math. Theor. 54, 225301 (2021)

resourceful measurement

free measurement

free operation A

Ingredients:

1) Free measurements versus resourceful measurements

2) Free operations versus resource-increasing operations
3) Quantification of the resource
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Resource theories for sets of quantum measurements:
ingredients

1) Free measurements F = {Fy, }:
e.g. for Foip = >, Qj(a,n)|i) (i] with @4 > 0 < RT of Coherence
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ingredients

1) Free measurements F = {Fy, }:
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2) Operations: (Free operations do not increase the resource)
(i) remember A(o) =3_, K/“QKT; adjoint map AT acting on M,,:
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Resource theories for sets of quantum measurements:
ingredients

1) Free measurements F = {Fy, }:
e.g. for Fp = > Qij(a,0)|i) (i] with a;j(q ) > 0 < RT of Coherence

2) Operations: (Free operations do not increase the resource)
(i) remember A(o) =3_, K#QKT; adjoint map AT acting on M,,:

tr[ M, A(0)] = tr[My, 3, KoKl = tr[3,, Kf M, K0 =
tr[AT(Makv)Q]

(ii) Mixture and classical postprocessing map:

M = (M) with My, =37 p(aly) 32, a(bly, z, a) Moy,

3) Quantification of the resource: monotone R(M) with properties
(i) RM)=0 <= MecF
(i) ROM) > RIAT(M)) Y Al
(”') ( ) > R(f(M)) v gfree
(iv) RipM + (L = n)N) < nR(M) + (1 = n)R(N)

On resource theories for sets of quantum measurements , p.

9



Different types of measurement resources

® Resource of an individual measurement
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Different types of measurement resources

® Resource of an individual measurement
® [nformativeness:
Free measurements F, = ¢,1q  with ) qo =1
® (Coherence:
Free measurements I, = > ay|q|i)(i]  with a ) >0
® Resource of a set of measurements
® Incompatibility:
Free measurement assemblage F,|, = >, v(alz,\)Gx Va,z,
i.e. can be simulated by single measurement and deterministic
classical post-processing O. Giihne et al, arXiv:2112.06784
® Resource of set of measurements combined with resource of state
® Steering: Unsteerable state assemblage given as
Oajz = tri[(Mg, @ 1)o] = >, v(alz, N)ox Va,x
® Nonlocality: Local probability distribution given as
Q(a7 b|xv y) = tr[(Ma\:c ® Nbly)Q] = Z,\ W()‘)UA(G'Mv )‘)UB (b|y7 )‘> Va,b,z,y
Task:
Develop a unified framework for resource theories of measurements
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Resource theories for quantum measurements:
quantification

Typical quantifyer in literature: robustness

Rrob(M) —mm{s>0| I Ns.t. M+SN 6.7:}

M. Oszmaniec and T Biswas, Quantum 3, 133 (2019)

Note: Robustness may be not "well-behaved”
(e.g. may be infinite)
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Distance-based measurement resource quantification

Introduce resource monotone:
R(M) := min D(M, F)
FeF

where [ is set of free measurements, D(M, F) is distance
(i.e. positive for M # F, symmetric, fulfils triangle inequality)
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Distance-based measurement resource quantification
Introduce resource monotone:

R(M) := r]{_lei%D(M,}")

where [ is set of free measurements, D(M, F) is distance
(i.e. positive for M # F, symmetric, fulfils triangle inequality)

Our suggestion:
Measure-and-prepare channel associated to POVM:

AMw (Q) = ztr[Ma|zQ] ’a> <CL’

Diamond distance between channels:
1
Dy(A1,A2) = max -
0E€S(HRH) 2

with trace norm || X||; = tr[V XTX]
L. Tendick, M. Kliesch, H. Kampermann, and DB, arXiv:2205.08546

(A1 — A2) @ g)o|1
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Distance-based monotones for measurement resources

Informativeness:

IFO(MP) = fneli]l?m %:P(JU)DO(AMz ) A]'-w)
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Distance-based monotones for measurement resources
Informativeness:

IFo(Mp) = HEH]PQUIZp 2)Do (A, , A7)

Coherence:

CoMp) = fnglwr.lczp z)Do(Am, . AF,)

Incompatibility:

lo(Mp) = min Zp )Ds(Apm,, AF,)

Steerability:
S(¢ P = 27 LHSZP H0'a|z - Ta|zH1
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Distance-based monotones for measurement resources

Informativeness:

IFQ(MP) — mln Zp D<> AMw’A]::c)

Fely

Coherence:

CoMp) = IQ%CZP z)Do(Am, . AF,)

Incompatibility:
lo(Mp) = min Zp )Do (A, AF,)

.FE]FJM
Steerability:
1
S(dp) = 27 LHSZP H0'a|z - Ta|zH1
Nonlocality:
.
N(gp) = 5 min - > p(z,y)la(a, ble,y) —t(a,blz,y)|

a,b,x,y

On resource theories for sets of quantum measurements ,

p-

13



Nested structure for some types of measurement resources

Ul = uninformative
IC = incoherent

JM = jointly measurable

@

Informativeness > Coherence > Incompatibility
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Hierarchy of measurement resources

Let My, ,Np, be weighted measurement assemblages and ¢ a
bipartite quantum state. Let &, be a state assemblage obtained
via 04, = tr1[(M,), ® 1)o] and let qp, be a probability distribution
obtained via q(a, b|z,y) = tr[Ny,0,,] and p(x,y) = pa(z)ps(y).
The following sequence of inequalities holds:

IFe(Mp,) > Co(Mp,) > 16(Mp,) > S(dp,) > N(ap)

Idea of proof:

i) First 2 inequalities: consequence of nested structure of free sets

ii) Third inequality: use state assemblage resulting from closest JM
measurements (w.r.t. M) < upper bound on steerability

iii) Fourth inequality: use probability distribution resulting from
measurement on closest LHS assemblage < upper bound on nonlocality

L. Tendick, M. Kliesch, H. Kampermann, and DB, arXiv:2205.08546
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Example for hierarchy: CGLMP measurements

IFo(Mp,) = Co(Mp,) 2 lo(Mp,) > S(p,) > N(ap) |

0%l (o1
&8

¢

Dimension d
Here IF, = Co =1— 1%
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Example for hierarchy: CGLMP measurements

IFo(Mp,) 2 Co(Mp,) = lo(Mp,) = S(p,) = Nap) |

0B [
-8-5

¢

02

Amount of resource

Dimension d Here ”:<> — C<> =1 %

Max. entangled state o = [®1)(®1| with |®1) = %1 S Jad).
[by)

0
CGLMP-measurements { M|, = |az)(az|}, {Ny)y = (by|} in dimension d, where

d—1 .
jax) = = > exp Tt —alla),  Iby) = f Z exp [T a6~ By)la)
q=0

with az = (x —1/2)/2, By =y/2, and a,b=0,--- ,d — 1 for z,y = 1,2.
D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 88, 040404 (2002)
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Results for resource monotones

Semidefinite Programme (SDP) for diamond distance:
compare J. Watrous, arXiv:0901.4709

e Find numerical solutions for Rs(Mp,)
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Results for resource monotones

Semidefinite Programme (SDP) for diamond distance:
compare J. Watrous, arXiv:0901.4709
® Find numerical solutions for R,(Mp)
® Find analytical bounds or exact analytical expressions for R, (Mp):
feasible solution of primal problem < upper bound;
feasible solution of dual problem < lower bound
® |nteresting examples for incompatibility:

® MUB measurement assemblage:
Given M = {Ma\:c = |va\:c><va\:c|} with |<va|x|vb|y>| = %Vavb and
x #y. Then

(d—1)(m-1)
(d+1)m

(m—1)
1_E(1+ NG

Here d = dimension, m = number of liases.

® For fixed m, large d: I,(M)=1— —

® Method provides bounds for incompatibility even for cases when
unknown whether MUB exists, e.g. m =4 in d = 6.
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Tightness of hierarchy

IFo(Mp,)>Co(Mp,) 2 lo(Mp,) = S(@p,) = N(ap) |

Question: For which measurements (and states) are the bounds
(which ones?) tight?
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Tightness of hierarchy

IFo(Mp,)2Co(Mp,) = 16(Mp,) = S(Gp,) 2 N(ap) |

Question: For which measurements (and states) are the bounds
(which ones?) tight?

1) The equality
IFO(MP) = CO(Mp)

holds for M, which are mutually unbiased to set of projective
measurements onto incoherent basis, i.e. to {|i)(i|}.

Proof idea:

i) Show that IF(
ii) Show that Cy(
measurement.

p)=1-— é for all rank-1 projective measurements.
p)=1-— é is achieved by mutually unbiased

M
M
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Tightness of hierarchy

IFe(Mp,) = Co(Mp,) = 16(Mp,)>S(Fp,) > N(ap) J
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Tightness of hierarchy

IFo(Mp,) > Co(Mp,) > 1o(Mp,)>S(@p,) > Nap) |

2) The equality

lo(M) = S(7)
holds for state o = |®)(®| with [®T) = id S>974 |id) and uniformly
weighted MUB measurement assemblages with m = 2,m = d and

m=d+ 1.

On resource theories for sets of quantum measurements , p. 19



Tightness of hierarchy
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2) The equality

lo(M) =5(7)
holds for state o = |®)(®| with [®T) = id S>974 |id) and uniformly
weighted MUB measurement assemblages with m = 2,m = d and
m=d+ 1.
Proof idea:
i) Use standard construction of MUBs (finite fields with d elements),
and link to depolarising robustness of measurement assemblage
< analytic expression for Io(M).
ii) Show via steering inequality violation that S(&) is lower bounded
by same expression.
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Tightness of hierarchy

IFe(Mp,) = Co(Mp,) = 16(Mp,)>S(Fp,) > N(ap) J

2) The equality
lo(M) = 5(7)

holds for state o = |®)(®| with [®T) = id 297 Jid) and uniformly
weighted MUB measurement assemblages with m = 2,m = d and
m=d+ 1.

Proof idea:

i) Use standard construction of MUBs (finite fields with d elements),
and link to depolarising robustness of measurement assemblage

< analytic expression for Io(M).

ii) Show via steering inequality violation that S(&) is lower bounded

by same expression.

Conjecture: Equivalence of incompatibility and steering holds also for
other constructions of MUBs and 2 < m < d + 1.
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Tightness of hierarchy

IFo(Mp,) 2 Co(Mp,)2lo(Mp,) = S(@p,)>N(ap) |

3) Remaining two inequalities:

We conjecture that
Co(Mp) = lo(Mp)
and
S(Fp,) = N(qp)

are true inequalities in non-trivial scenarios (suggested by numerical search)
— future research needed.
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Summary and Outlook

® Resource theories for quantum measurements are being developped.

e Suggestion for unified framework for resource theories of sets of
measurements (quantifier: diamond distance).

® Hierarchy for measurement resources:
Informativeness > Coherence > Incompatibility > Steerability >
Nonlocality

e SDP formulation leads to numerical solutions and analytical
bounds/solutions/insights (e.g. for MUB measurement assemblages).

® Future directions:
Relations to other resource theories (e.g. imaginarity)?
Comparison with entropic resource quantifiers for sets of
measurements? Tightness of parts of hierarchy?

L. Tendick, M. Kliesch, H. Kampermann, and DB, arXiv:2205.08546
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