Coherence Generation , Irreversible Entropy production and non-Adiabaticity in Quantum Processes

F. Plastina Università della Calabria

G. Francica

J. Goold

The Abdus Salam International Centre for Theoretical Physics

Also thanks to: M. Paternostro (Belfast), R. Zambrini (Palma de Mallorca)

Outline:

1. Work production and irreversibility: Irreversible work

1.1 Irreversibility due to Coherence generation

2. Non-Adiabaticity and irreversibility: Inner friction

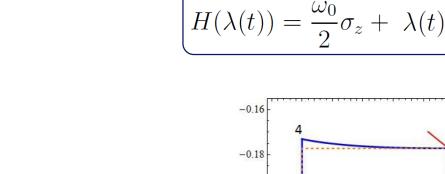
2.1 Non-Adiabatic generation of quantum Coherence

3. Conclusions:

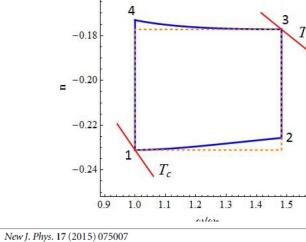
The role of coherence in Quantum Thermodynamics

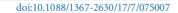
Motivating example: single qubit Otto engine

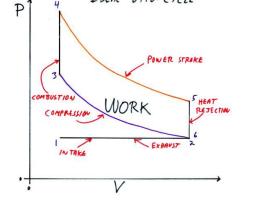
IDEAL OTTO-CYCLE



$$a_z + \lambda(t) \sigma_x \qquad \lambda(t) = \frac{\alpha \omega_0 t}{2}$$







New Journal of Physics The open access journal at the forefront of physics Deutsche Physikalische Gesellscheft **DPG IOP** Institute of Physics

CrossMark

PAPER

effects

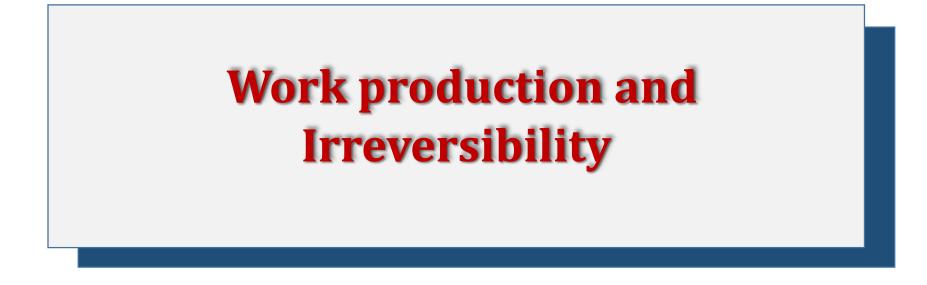
OP Publishing

OPEN ACCESS

RECEIVED 1 April 2015

 $A\,Alecce^1, F\,Galve^2, N\,Lo\,Gullo^{1,3}, L\,Dell'Anna^{1,3}, F\,Plastina^{4,5}\,and\,R\,Zambrini^2$

Quantum Otto cycle with inner friction: finite-time and disorder



PRL 113, 260601 (2014)

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2014

Irreversible Work and Inner Friction in Quantum Thermodynamic Processes

F. Plastina,^{1,2} A. Alecce,³ T. J. G. Apollaro,^{1,2,4} G. Falcone,^{1,2} G. Francica,^{1,2} F. Galve,⁵ N. Lo Gullo,^{3,6} and R. Zambrini⁵

PHYSICAL REVIEW E 99, 042105 (2019)

Role of coherence in the nonequilibrium thermodynamics of quantum systems

G. Francica,^{1,2} J. Goold,³ and F. Plastina^{1,2}

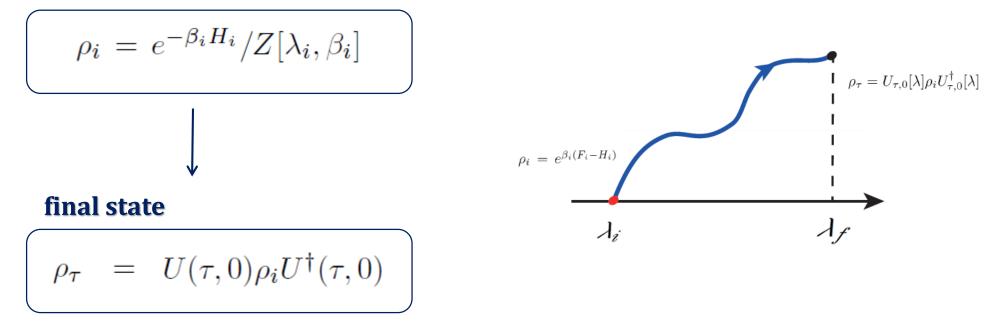
Setting the stage: Thermodynamic transformation

Work parameter
$$\lambda(t)$$
: $\lambda(t=0) = \lambda_i \longrightarrow \lambda(\tau) = \lambda_f$

Closed quantum system :

the Hamiltonian $H[\lambda(t)]$ generates the evolution $U(\tau, 0)$

Initial (equilibrium) state



Work and Jarzynski relation

Probability density for the work done on the system:

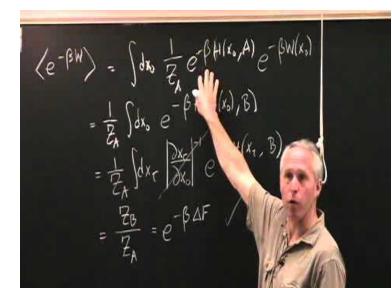
$$p(w) = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} \delta(w - \varepsilon_m^{(f)} + \varepsilon_n^{(i)})$$

with $P_n^{(i)} = Z_i^{-1} e^{-\beta_i \varepsilon_n^{(i)}}$ and $P_{n \to m}^{(\tau)} = \left| \left\langle \varepsilon_m^{(f)} \right| U(\tau, 0) \left| \varepsilon_n^{(i)} \right\rangle \right|^2$

Fluctuation relation

$$\left\langle e^{-\beta_i w} \right\rangle = e^{-\beta_i \Delta F}$$

where
$$\Delta F = F[\lambda_f, \beta_B] - F[\lambda_i, \beta_i]$$



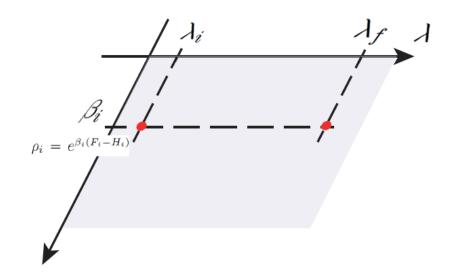
$$\left\langle e^{-\beta_i w} \right\rangle = e^{-\beta_i \Delta F}$$

$$\langle w_{irr} \rangle = \langle w \rangle - \Delta F \ge 0$$

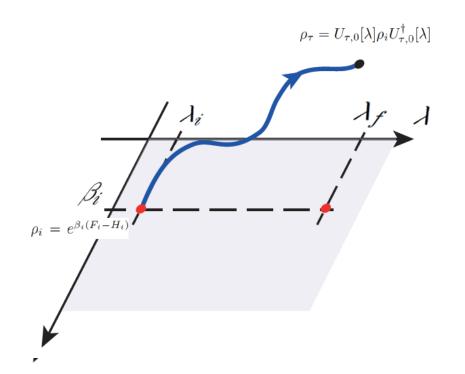
The irreversible work quantifies the irreversibility

$$\langle w_{irr} \rangle = \langle w \rangle - \Delta F \ge 0$$

The irreversible work quantifies the irreversibility



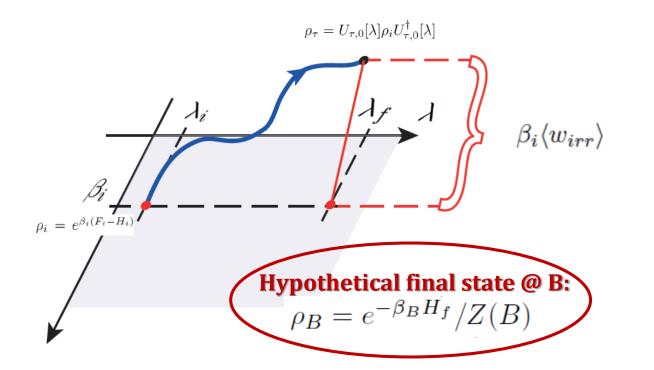
The irreversible work quantifies the irreversibility



$$\left\langle e^{-\beta_i w} \right\rangle = e^{-\beta_i \Delta F}$$

$$\langle w_{irr} \rangle = \langle w \rangle - \Delta F \ge 0$$

The irreversible work quantifies the irreversibility

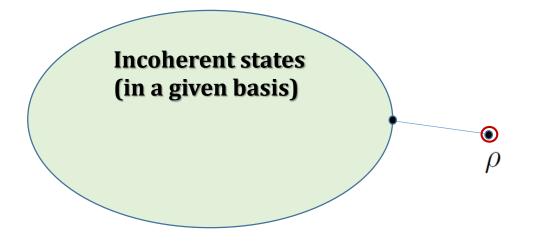


quantum relative entropy

$$\langle S_{irr} \rangle = \beta_i \langle w_{irr} \rangle = D(\rho_\tau || \rho_B)$$

S. Deffner and E. Lutz, PRL10

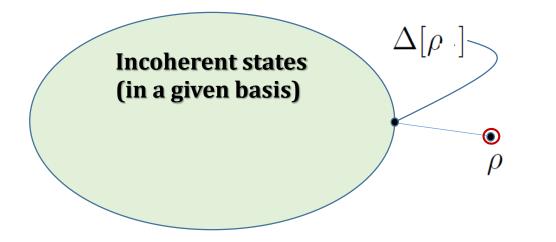
(entropic) Quantification of Coherence



definition

$$C(\rho_{\perp}) = \min_{\sigma \in I} D(\rho_{\perp} || \sigma)$$

(entropic) Quantification of Coherence



definition

$$C(\rho_{\perp}) = \min_{\sigma \in I} D(\rho_{\perp} || \sigma)$$

minimization

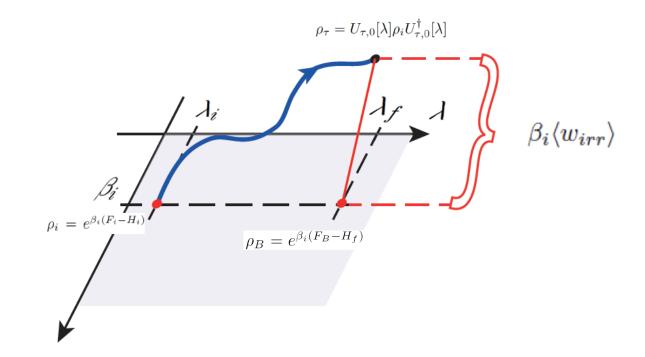
$$C(\rho_{\perp}) = D(\rho_{\parallel} ||\Delta[\rho_{\parallel}]) = S(\Delta[\rho_{\perp}]) - S(\rho_{\perp})$$

A. Streltsov, G. Adesso, M. Plenio, ArXiv 2016

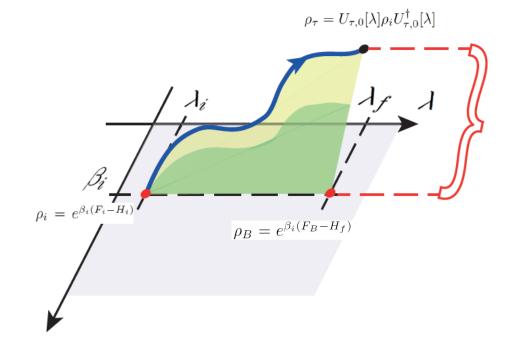
In the thermodynamic context, the "preferred" basis is obvious !

Generated Coherence :
$$C(\rho_{\tau}) = D(\rho_{\tau} || \Delta[\rho_{\tau}]) = S(\Delta[\rho_{\tau}]) - S(\rho_i)$$

Irreversible work and coherence generation



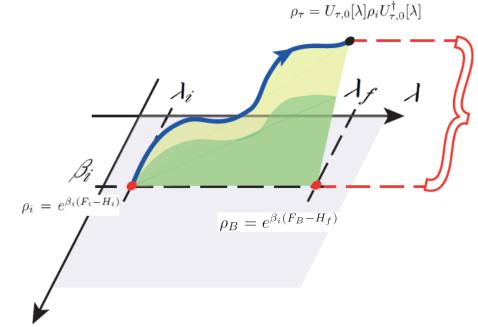
Irreversible work and coherence generation



$$B_i \langle w_{irr} \rangle = C(\rho_\tau) + D(\Delta[\rho_\tau] || \rho_B)$$

In fact, the decomposition holds at any intermediate time t.

Irreversible work and coherence generation



$\beta_i \langle w_{irr} \rangle = C(\rho_\tau) + D(\Delta[\rho_\tau] || \rho_B)$

In fact, the decomposition holds at any intermediate time t.

Three fluctuation theorems:

Stochastic variables

 $s_{nm} := \beta_i [(\epsilon_m(\tau) - \epsilon_n(0)) - (F_B - F_i)],$ $p_{nm} := \ln \rho_{mm}(\tau) - \ln \rho_{B,mm},$ $c_{nm} := s_{nm} - p_{nm} = \ln \rho_{nn}(0) - \ln \rho_{mm}(\tau)$

$$P(\alpha) = \sum_{n,m} \rho_{nn}(0) P_{n \to m}(\tau) \,\delta(\alpha - \alpha_{nm}) \,, \quad \text{for } \alpha = s, p, c \,,$$

averages

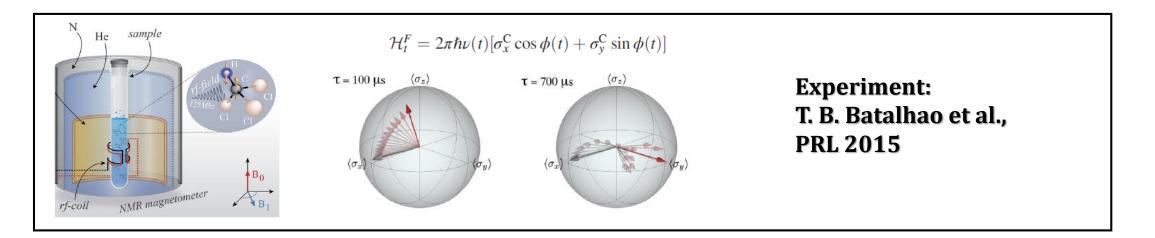
$$\langle s \rangle \equiv \langle S_{irr} \rangle \,, \; \langle p \rangle \equiv D(\Delta_{\tau}[\rho_{\tau}] || \rho_B) \,, \; \langle c \rangle \equiv C(\rho_{\tau})$$

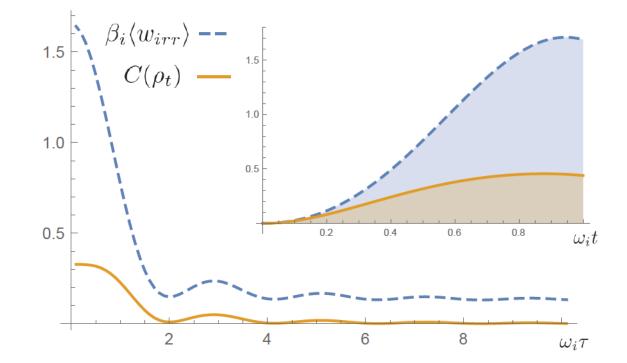
 $\langle s \rangle = \langle p \rangle + \langle c \rangle$

Fluctuation relations

$$\langle e^{-s} \rangle = \langle e^{-c} \rangle = \langle e^{-p} \rangle = 1$$

Example 1: spin ¹/₂ in a rotating magnetic field



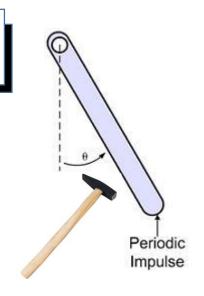


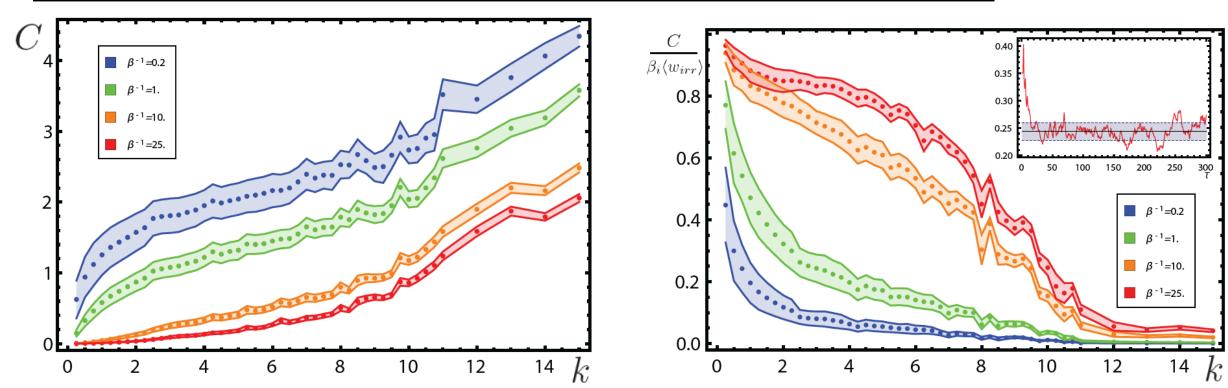
modelevolution
$$H(t) = H_0 + V(\theta) \sum_{n \in \mathbb{Z}} \delta(t - nT)$$
 \hat{U} $\hat{H}_0 = \frac{\hat{p}^2}{2}$ with $\hat{p} = -i\partial_{\theta}$, and $\theta \in [0, 2\pi)$ ρ_{τ} $V(\theta) = k \cos(\theta)$ $V(\theta) = k \cos(\theta)$

evolution

$$\hat{U} = e^{-i\hat{H}_0T}e^{-iV(\hat{\theta})}$$

$$\rho_{\tau} = U^{\tau} \rho_0 U^{\tau \dagger}$$



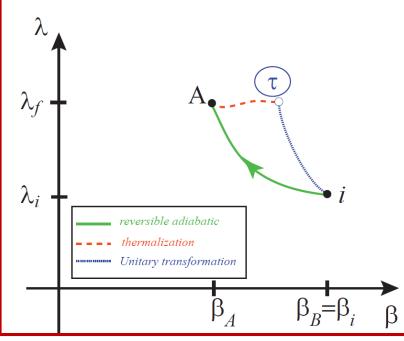


Adiabatic Transformation and non-adiabaticity

Define the adiabatic state A by the relation: $\rho_A := U_A \rho_0 U_A^{\dagger}$ (*) $U_A = \lim_{\tau \to \infty} U_{\tau,0}[\lambda]$

(entropic) non-adiabaticity parameter:

$$\mathcal{A} := D(\rho_{\tau} || \rho_A)$$



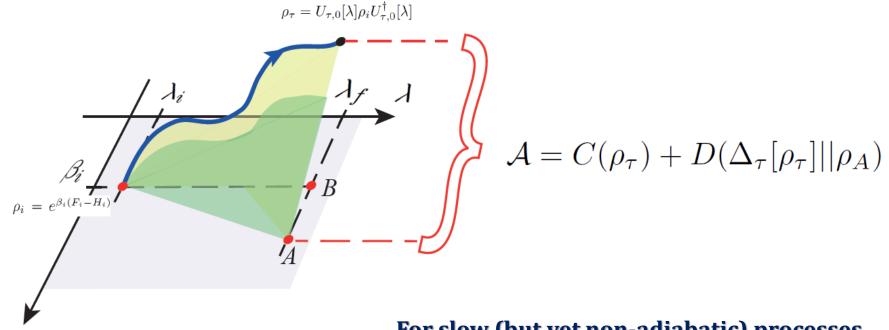
Adiabatic Work (hypothetical final state @ A)

$$\langle w_{i \to A} \rangle = \mathcal{U}_A - \mathcal{U}_i \equiv \sum_m P_m^{(i)} (\varepsilon_m^{(f)} - \varepsilon_m^{(i)})$$

Inner friction

$$\left\langle w_{fric}\right\rangle = \left\langle w\right\rangle - \left\langle w_{i\rightarrow A}\right\rangle = \frac{1}{\beta_A} D(\rho_\tau || \rho_A)$$

Non-adiabaticity and coherence generation

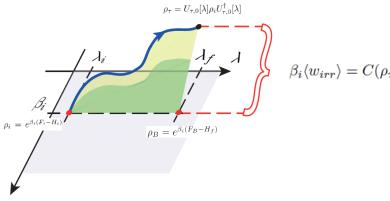


For slow (but yet non-adiabatic) processes, Coherence generation is the dominant contribution to non-adiabaticity :

$$\mathcal{A} = C(\rho_{\tau}) + \mathcal{O}\left(\frac{1}{\tau^2}\right)$$

Summary:

1. Non-equilibrium thermodynamics irreversibility due to coherence generation



 $\beta_i \langle w_{irr} \rangle = C(\rho_\tau) + D(\Delta[\rho_\tau] || \rho_B)$

2. Non-adiabaticity inner friction

