Driven Quantum Dynamics: Will It Blend?

Leonardo Banchi (University of Florence, ltaly)
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A driven quantum system
H(t) = Ho + g(t)V

Resulting unitary operation after a
time T

U= Te”'for H(t) dt
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Question

A driven quantum system

H(t) = Ho + g(t)V

Resulting unitary operation after a
time T

U— Te*"foT H(t) dt

We show (under some conditions):

After some time {U} is fully random (Haar)

Estimation of the blending time using the theory of open quantum
systems and many-body techniques (Bethe Ansatz)

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)



Motivation



Very useful in quantum information processing

e Quantum encryption

Y1), [2), .. — Ur 1), Uslepa), ...

e State tomography (2-design)
e Optical tomography with 2N-designs (N = number of photons)
Banchi, Kolthammer, Kim, PRL 2018

e Noise estimation in open quantum systems
(apply random unitaries such that the coherent part is averaged out)

e Generation of highly entangled states



Quantum Supremacy

credit: J. Carolan et al./Science 2015

Boson sampling experiments require sampling from hard quantum
distribution



Common approach

Theoretical scheme:
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Common approach

Theoretical scheme:
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Physics: courtesy of S. Boixo (Google)

N 3 N-1
H,, ()= 2[5‘(”13‘ +gf1‘(ﬁ‘ —D+i(a,e® —ale ™" )/“‘(I):l+ Z,Q(I)((Alﬁj_, +a,at)

i=t
detuning microwave amplitude microwave phase  g-pulse anharmonicity
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How?



Geometric picture

U=Te ' Jo H(t)dt
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How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

HEU [UpUT] —/UpUT,uHaar(dU)H <e
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How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

< E
Lo

HEU [U®qp U®q’r] _ / U®qp y®at UHaar(dU)

No single (global) measurement can distinguish between the two
processes with probability larger than e



How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

<€
<o

HEU [U®qp U®qT] _ / U®qp y®at MHaar(dU)

Using vectorisation

X=Xl Gl = X)) =32 X i)

|AX)) = A® 1]X)) and | XA)) = 1 ® AT|X)). With U299 = U®9 @ (U®9)*

E(HJU, q) = HEU [U@C],C]] 7 / U®q}q /J'Haar(dU)H <€

o



How “random” is the evolution?

e(MUvq) = HEU [U®q7q] - / Y MHaar(dU)H <e€

o0

Operational way of measuring if two probability distributions are “close
enough”

e(rus q) < 2gW(pu, fiaar) Brandao et al. (2016)



Physical picture

In boson sampling experiments the photon distribution follows

per(U Z H = Tr [UB9Ky ]

o0’ i,j=1

q is the number of injected photons — “quantum Plinko machine”




Physical picture

Convergence of spin correlations in randomly driven XY spin chain

<5:'a(t)5;iq(t)> = Tr [U®%9xy] for o, B € {x,y}

g is the distance between spins

Py




Physical picture

Renyi entropies are studied in information scrambling

1 1
Sq:71_qTr[p"]z71_qTr[(p®p®---®p)P]

time

P

If p = Trancina[U ) (] U] then E[Tr(p%)] = Tr [US99K ]



Results




Random pulse

Stochastic driving of a quantum system

N

A(t) = H + g(t)V

e.g. with random amplitudes and phases

K
g(t) = Z Ak cos(wit + k)
k=1
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Random pulse

Stochastic driving of a quantum system
H(t)=H+g(t)V
e.g. with random amplitudes and phases
K
g(t) = Z Ay cos(wit + ©k)

k=1

The average is over the random amplitudes, phases etc.

Ey [U®9pU®T] = E [(TeifoT Fi(s) ds)®" 0 (Tei ;T As) ds) @ﬂ

Simplification when g(t) is

e Gaussian (central limit theorem)
e Harmonic E[g(t + s)g(t)] = c(s)
e Short correlations Tc(Ts) ~ 54(s)



Simplifications

Ey [U®‘7pU®‘”] ) |:(7-e—if0T A(s) ds) ®q P (Tei ST A(s) ds)®q:|
~e Ty,
where

£op = = [, ] = 5 [VO", VO, ]

XPI=XpX® ..., where @ is the Kronecker sum X@Y=X®1+1xY



Cartoon picture

Each “replica” is initially

decoupled from the others



Cartoon picture

Each “replica” is initially

decoupled from the others




After the average over the random pulses these copies are interacting
(& la replica trick), but in a dissipative way

L9 = —i [H®, p] — % [Vea, [Vea, p]]

shown for g =4



Controllability implies uniform blending

If H+ g(t)V is fully-controllable, then

lim efﬁ"p:/ U®9pU%9t du
Haar
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First central result
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Controllability implies uniform blending

If H+ g(t)V is fully-controllable, then

lim efﬁ"p:/ U®9pU%9t du
Haar

t—o0

Proof idea:

fully controllable means, H, V, [H, V], [H,[H, V]], ... generate the full
Lie algebra SU(d)

Schur Weyl duality: (C?)®9 = @,\P* @ U*

P irreducible representation of the symmetric group Sq

U™ irreducible representation of SU(d)
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A* is the Liouvillean gap, the eigenvalue of —L£9 with minimal non-zero

real part



Convergence time

A* is the Liouvillean gap, the eigenvalue of —L£9 with minimal non-zero

q .
et — lim et
t—o00

/29 —A"t
S Ay e

n

real part

How do we estimate \*?

Complicated problem:

e L9 is formed by g interacting copies of the original Hilbert space
e Huge Hilbert space

e Restriction to low g is not enough



Many body theory

Let's write the Liouvillean using “vectorised” notation

Ly=—i(H®®1—1® H®) - %(v®q®1 —1® V&)

Second quantized notation: for any operator H

HET = Hyal,au

ij,u

g now is the total number of “virtual” particles



Many body theory

Let's write the Liouvillean using “vectorised” notation

Ly=—i(H®®1—1® H®) - %(v®q®1 —1® V&)

Second quantized notation: for any operator H

HET = Hyal,au

iju

g now is the total number of “virtual” particles

_ i i
Lq=—i) Hap(al1apur — 3, 30u)
afu

(o2
— 23" VaaVsa(aut = Maws)(msut = n3u)

afuv

where n, = ala, and V is diagonal.



Mean field predictions

Mean field solution

The gap A\* is independent on g

e Confirmed in “typical’ numerical simulations
e Powerful result: the convergence time the same for all the moments?

e Validity because “everything interacts with everything"”

IFor certain choices of the norm...
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Mean field predictions

Mean field solution

The gap A\* is independent on g

e Confirmed in “typical’ numerical simulations
e Powerful result: the convergence time the same for all the moments?

e Validity because “everything interacts with everything"”

But...

we found (uncommon) counterexamples

e (replica?) symmetry breaking in tensor powers

IFor certain choices of the norm...



Exactly solvable model: symmetric case

W
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[e3



Exactly solvable model: symmetric case

Strong driving limit o > 1

SU(1,1) Richardson-Gaudin model

=il o
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Exactly solvable model: symmetric case

Spectrum from Bethe Ansatz
2 1
A=—— 4 —
ny is the number of unpaired particles in mode k
ne+1 1 1
R R .
k Wa — 2gk Lok @ L = WB

Solutions related to the roots of Heine-Stieltjes polynomials, so
=il =il
28111 < wa < 2g

Cyr 8 o (TY -3
gap = \ = sin (L>—O(L )

L is the length. The gap is independent on g



Exactly solvable model: other cases

Fermionic representation SU(2) Gaudin model

S = dpdj -

= (St » 2 8
yoEr L=-2+2Y 855
5= (ajTajT +ajdj) — 1)/2 7 %=



Exactly solvable model: other cases

Fermionic representation

5 = 5JT5J¢T L
»our L
S7 = (a8 +4,3,—1)/2
Generic case
51 5+ — 3;14]
X(J) ix 1yt iyt d jx T
O — 2 ’
st _ 503
0) Aty — djy1d 4
Xoehvh) = 2 ’ Lo=-21 UZ&Z Xse
Xy = Bt Wi, o
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Exactly solvable model: generic cases

Spectrum from Bethe Ansatz

- [ng nyk + nyk) +4Zw ]
g0

(e}

ny is the number of unpaired particles in mode k

> —sz, +y

B Wj,B — Wj,a ), 8,+ Wjt1,8 — Wj,a



Exactly solvable model: generic cases

Final result

e Gap independent on g

e Mean field analysis is rigorous



Numerical check

Gap

1072 |

====: Strong driving limit
v Weak driving limit
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Finally?



Putting things together

e We need full controllability
e All the moments (typically) converge at the same time
e Open quantum system theory to estimate this time



but short time

Controllable,
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Numerical tests with stochastic pulse

Fully controllable case, after the blending time




Conclusions

Answered this question

When, and how rapidly, a quantum system subject to dynamical noise
produces a fully-random (i.e. Haar-uniform) distribution of unitary
evolutions?

Different tools from

e quantum information (quantum control, g-design)

e open quantum systems (dynamical semigroup, “low energy”
Liouvilleans)

e condensed matter physics (Bethe ansatz, mean field in replica space)

Explicit applications:

e Boson sampling experiments
e Estimation of the control time
e Entanglement generation in many-body settings

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)



Questions?

Yes, it blends!
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