Driven Quantum Dynamics: Will It Blend?

Leonardo Banchi

(University of Florence, Italy)

A driven quantum system

 $H(t) = H_0 + g(t)V$

Resulting unitary operation after a time ${\sf T}$

$$U = \mathcal{T}e^{-i\int_0^T H(t)\,dt}$$

A driven quantum system

 $H(t) = H_0 + g(t)V$

Resulting unitary operation after a time ${\sf T}$

 $U = \mathcal{T}e^{-i\int_0^T H(t)\,dt}$

What if g(t) is random?

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)

A driven quantum system

 $H(t) = H_0 + g(t)V$

Resulting unitary operation after a time ${\sf T}$

 $U = \mathcal{T}e^{-i\int_0^T H(t)\,dt}$

What if g(t) is random?

We show (under some conditions):

- After some time {U} is fully random (Haar)
- Estimation of the blending time using the theory of open quantum systems and many-body techniques (Bethe Ansatz)

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)

Motivation

Very useful in quantum information processing

• Quantum encryption

 $|\psi_1\rangle, |\psi_2\rangle, \ldots \longmapsto U_1 |\psi_1\rangle, U_2 |\psi_2\rangle, \ldots$

- State tomography (2-design)
 - Optical tomography with 2*N*-designs (N = number of photons)

Banchi, Kolthammer, Kim, PRL 2018

- Noise estimation in open quantum systems (apply random unitaries such that the coherent part is averaged out)
- Generation of highly entangled states

Quantum Supremacy

credit: J. Carolan et al./Science 2015

Boson sampling experiments require sampling from hard quantum distribution

Common approach

Theoretical scheme:

Common approach

Theoretical scheme:

Physics:

courtesy of S. Boixo (Google)

$$\begin{split} \hat{H}_{BH}(t) &= \sum_{j=1}^{N} \left[\delta_{j}(t) \hat{n}_{j} + \frac{\eta}{2} \hat{n}_{j}(\hat{n}_{j} - 1) + i \left(\hat{a}_{j} e^{i\phi(t)} - \hat{a}_{j}^{\dagger} e^{-i\phi(t)} \right) F_{j}(t) \right] + \sum_{j=1}^{N-1} g(t) \left(\hat{a}_{j} \hat{a}_{j+1}^{\dagger} + \hat{a}_{j+1} \hat{a}_{j}^{\dagger} \right) \\ \frac{\text{detuning}}{\delta_{j}(t)} & \text{microwave amplitude} \quad \text{microwave phase} \quad \text{g-pulse} \quad \text{anharmonicity} \\ \frac{\delta_{j}(t)}{\delta_{j}(t)} \cdot \frac{F_{j}(t)}{\delta_{j}(t)} & \phi_{j}(t) & g(t) & \eta \end{split}$$

,

How?

$$U = \mathcal{T}e^{-i\int_0^{\mathcal{T}} H(t) \, dt}$$

$$U = \mathcal{T}e^{-i\int_0^T H(t) dt} \qquad \qquad H(t) = H_0 + g(t)V$$

$$U = \mathcal{T} e^{-i \int_0^{\mathcal{T}} H(t) \, dt}$$

$$H(t) = H_0 + g(t)V$$

$$U = \mathcal{T}e^{-i\int_0^T H(t) dt} \qquad \qquad H(t) = H_0 + g(t)V$$

Comparing probability distributions on unitaries as a physical process

$$\left\|\mathbb{E}_{U}\left[U
ho U^{\dagger}
ight]-\int U
ho U^{\dagger}\,\mu_{ ext{Haar}}(dU)
ight\|<\epsilon$$

Comparing probability distributions on unitaries as a physical process

$$\left\|\mathbb{E}_{U}\left[U^{\otimes q}\,\rho\,U^{\otimes q\dagger}\right] - \int U^{\otimes q}\,\rho\,U^{\otimes q\dagger}\,\mu_{\mathrm{Haar}}(dU)\right\|_{?} < \epsilon$$

Comparing probability distributions on unitaries as a physical process

q-design

$$\left\| \mathbb{E}_{U} \left[U^{\otimes q} \, \rho \, U^{\otimes q\dagger} \right] - \int U^{\otimes q} \, \rho \, U^{\otimes q\dagger} \, \mu_{\mathrm{Haar}}(dU) \right\|_{\diamond} < \epsilon$$

No single (global) measurement can distinguish between the two processes with probability larger than ϵ

Comparing probability distributions on unitaries as a physical process

q-design

$$\left|\mathbb{E}_{U}\left[U^{\otimes q}\,\rho\,U^{\otimes q\dagger}\right] - \int U^{\otimes q}\,\rho\,U^{\otimes q\dagger}\,\mu_{\mathrm{Haar}}(dU)\right\|_{\diamond} < \epsilon$$

Using vectorisation

$$X = \sum_{ij} X_{ij} \ket{i} ra{j} \quad \mapsto \quad \ket{X}
angle = \sum_{ij} X_{ij} \ket{ij}$$

 $|AX\rangle\rangle = A\otimes 1|X\rangle\rangle \text{ and } |XA\rangle\rangle = 1\otimes A^{T}|X\rangle\rangle. \text{ With } U^{\otimes q,q} = U^{\otimes q}\otimes (U^{\otimes q})^{*}$

Expanders (weaker)

$$e(\mu_U, q) = \left\| \mathbb{E}_U \left[U^{\otimes q, q} \right] - \int U^{\otimes q, q} \mu_{\text{Haar}}(dU) \right\|_{\infty} < \epsilon$$

Expanders

$$e(\mu_U, q) = \left\| \mathbb{E}_U \left[U^{\otimes q, q} \right] - \int U^{\otimes q, q} \, \mu_{\text{Haar}}(dU) \right\|_{\infty} < \epsilon$$

Operational way of measuring if two probability distributions are "close enough"

 $e(\mu_U, q) \leq 2q \mathcal{W}(\mu_U, \mu_{\text{Haar}})$ Brandao et al. (2016)

In boson sampling experiments the photon distribution follows

$$|\mathrm{per}(\tilde{U})|^2 = \sum_{\sigma,\sigma'} \prod_{i,j=1}^{q} \tilde{U}_{i,\sigma(i)} \tilde{U}^*_{j,\sigma'(j)} = \mathrm{Tr}\left[U^{\otimes q,q} \mathcal{K}_{\mathrm{b.s.}}\right]$$

q is the number of injected photons – "quantum Plinko machine"

Physical picture

Convergence of spin correlations in randomly driven XY spin chain $\langle S_i^{\alpha}(t)S_{i+q}^{\beta}(t)\rangle = \operatorname{Tr}\left[U^{\otimes q,q}\mathcal{K}_{\mathrm{XY}}\right] \quad \text{for } \alpha,\beta \in \{x,y\}$ *q* is the distance between spins

Renyi entropies are studied in information scrambling

$$S_q = \frac{1}{1-q} \operatorname{Tr}[\rho^q] \equiv \frac{1}{1-q} \operatorname{Tr}[(\rho \otimes \rho \otimes \cdots \otimes \rho) \mathcal{P}]$$

If $ho = {\sf Tr}_{
m ancilla}[U \mid \! \psi
angle \langle \psi \mid U^{\dagger}]$ then

 $\mathbb{E}[\mathsf{Tr}(\rho^q)] = \mathsf{Tr}\left[U^{\otimes q,q}\mathcal{K}_{\mathrm{Renyi}}\right]$

Results

Random pulse

Stochastic driving of a quantum system

$$\hat{H}(t) = H + g(t)V$$

e.g. with random amplitudes and phases

$$g(t) = \sum_{k=1}^{K} A_k \cos(\omega_k t + \varphi_k)$$

Random pulse

Stochastic driving of a quantum system

$$\hat{H}(t) = H + g(t)V$$

e.g. with random amplitudes and phases

$$g(t) = \sum_{k=1}^{K} A_k \cos(\omega_k t + \varphi_k)$$

The average is over the random amplitudes, phases etc.

$$\mathbb{E}_{U}\left[U^{\otimes q}\rho U^{\otimes q\dagger}\right] = \mathbb{E}\left[\left(\mathcal{T}\mathrm{e}^{-\mathrm{i}\int_{0}^{\tau}\hat{H}(s)\,ds}\right)^{\otimes q}\,\rho\,\left(\mathcal{T}\mathrm{e}^{\mathrm{i}\int_{0}^{\tau}\hat{H}(s)\,ds}\right)^{\otimes q}\right]$$

Random pulse

Stochastic driving of a quantum system

$$\hat{H}(t) = H + g(t)V$$

e.g. with random amplitudes and phases

$$g(t) = \sum_{k=1}^{K} A_k \cos(\omega_k t + \varphi_k)$$

The average is over the random amplitudes, phases etc.

$$\mathbb{E}_{U}\left[U^{\otimes q}\rho U^{\otimes q\dagger}\right] = \mathbb{E}\left[\left(\mathcal{T}\mathrm{e}^{-\mathrm{i}\int_{0}^{\tau}\hat{H}(s)\,ds}\right)^{\otimes q}\,\rho\,\left(\mathcal{T}\mathrm{e}^{\mathrm{i}\int_{0}^{\tau}\hat{H}(s)\,ds}\right)^{\otimes q}\right]$$

Simplification when g(t) is

- Gaussian (central limit theorem)
- Harmonic $\mathbb{E}[g(t+s)g(t)] = c(s)$
- Short correlations $Tc(Ts) \simeq \frac{\sigma}{2}\delta(s)$

$$\begin{split} \mathbb{E}_{U}\left[U^{\otimes q}\rho U^{\otimes q\dagger}\right] &= \mathbb{E}\left[\left(\mathcal{T}e^{-\mathrm{i}\int_{0}^{\tau}\hat{H}(s)\,ds}\right)^{\otimes q}\,\rho\,\left(\mathcal{T}e^{\mathrm{i}\int_{0}^{\tau}\hat{H}(s)\,ds}\right)^{\otimes q}\right] \\ &\simeq e^{-\mathcal{T}\mathcal{L}^{q}}\,\rho\,, \end{split}$$

where

$$\mathcal{L}^{q} \rho = -i \left[H^{\oplus q}, \rho \right] - \frac{\sigma}{2} \left[V^{\oplus q}, \left[V^{\oplus q}, \rho \right] \right]$$

 $X^{\oplus q} = X \oplus X \oplus \ldots$, where \oplus is the Kronecker sum $X \oplus Y = X \otimes 1 + 1 \otimes Y$

Cartoon picture

Each "replica" is initially

decoupled from the others

Cartoon picture

Each "replica" is initially

decoupled from the others

Cartoon picture

After the average over the random pulses these copies are interacting (à *la replica trick*), but in a dissipative way

$$\mathcal{L}^{q}\rho = -i\left[H^{\oplus q},\rho\right] - \frac{\sigma}{2}\left[V^{\oplus q},\left[V^{\oplus q},\rho\right]\right]$$

shown for q = 4

Controllability implies uniform blending

First central result

If H + g(t)V is **fully-controllable**, then

$$\lim_{t\to\infty} e^{t\mathcal{L}^q}\rho = \int_{\mathrm{Haar}} U^{\otimes q}\rho U^{\otimes q\dagger} \, dU$$

Controllability implies uniform blending

First central result

If H + g(t)V is **fully-controllable**, then

$$\lim_{t\to\infty} e^{t\mathcal{L}^q} \rho = \int_{\text{Haar}} U^{\otimes q} \rho U^{\otimes q\dagger} dU$$

Controllability implies uniform blending

First central result

If H + g(t)V is **fully-controllable**, then

$$\lim_{t\to\infty} e^{t\mathcal{L}^q} \rho = \int_{\text{Haar}} U^{\otimes q} \rho U^{\otimes q\dagger} dU$$

Proof idea:

fully controllable means, H, V, [H, V], [H, [H, V]], ... generate the full Lie algebra SU(d)

 $\underbrace{ \begin{array}{l} \underline{ Schur \ Weyl \ duality:} \ (\mathbb{C}^d)^{\otimes q} = \otimes_{\lambda} \mathcal{P}^{\lambda} \otimes U^{\lambda} \\ \mathcal{P}^{\lambda} \ \text{irreducible representation of the symmetric group } S_q \\ \mathcal{U}^{\lambda} \ \text{irreducible representation of SU(d)} \end{array} }$

$$\left\|e^{t\mathcal{L}^q} - \lim_{t o\infty} e^{t\mathcal{L}^q}
ight\|_\eta \,\lesssim\, A_\eta\; e^{-\lambda^*t}$$

 λ^* is the Liouvillean gap, the eigenvalue of $-\mathcal{L}^q$ with minimal non-zero real part

Convergence time

$$\left\|e^{t\mathcal{L}^{q}}-\lim_{t o\infty}e^{t\mathcal{L}^{q}}
ight\|_{\eta}\ \lesssim\ A_{\eta}\ e^{-\lambda^{*}t}$$

 λ^* is the Liouvillean gap, the eigenvalue of $-\mathcal{L}^q$ with minimal non-zero real part

How do we estimate λ^* ?

Complicated problem:

- \mathcal{L}^q is formed by q interacting copies of the original Hilbert space
- Huge Hilbert space
- Restriction to low q is not enough

Many body theory

Let's write the Liouvillean using "vectorised" notation

$$\mathcal{L}_q = -i(H^{\otimes q} \otimes 1 - 1 \otimes H^{\otimes q}) - rac{\sigma}{2}(V^{\otimes q} \otimes 1 - 1 \otimes V^{\otimes q})^2$$

Second quantized notation: for any operator H

$$H^{\otimes q} = \sum_{ij,u} H_{ij} a^{\dagger}_{iu} a_{ju}$$

q now is the total number of "virtual" particles

Many body theory

Let's write the Liouvillean using "vectorised" notation

$$\mathcal{L}_q = -i(H^{\otimes q} \otimes 1 - 1 \otimes H^{\otimes q}) - rac{\sigma}{2}(V^{\otimes q} \otimes 1 - 1 \otimes V^{\otimes q})^2$$

Second quantized notation: for any operator H

$$H^{\otimes q} = \sum_{ij,u} H_{ij} \mathsf{a}_{iu}^\dagger \mathsf{a}_{ju}$$

q now is the total number of "virtual" particles

Hubbard-like model (non Hermitean)

$$egin{aligned} \mathcal{L}_{q} &= -i\sum_{lphaeta u} H_{lphaeta}(a^{\dagger}_{lpha u\uparrow}a_{eta u\uparrow}-a^{\dagger}_{eta u\downarrow}a_{lpha u\downarrow}) \ &-rac{\sigma}{2}\sum_{lphaeta uv} V_{lphalpha}V_{etaeta}(n_{lpha u\uparrow}-n_{lpha u\downarrow})(n_{eta v\uparrow}-n_{eta v\downarrow}) \end{aligned}$$

where $n_x = a_x^{\dagger} a_x$ and V is diagonal.

Mean field predictions

Mean field solution

The gap λ^* is independent on q

- Confirmed in "typical" numerical simulations
- Powerful result: the convergence time the same for all the moments¹
- Validity because "everything interacts with everything"

¹For certain choices of the norm...

Mean field predictions

Mean field solution

The gap λ^* is independent on q

- Confirmed in "typical" numerical simulations
- Powerful result: the convergence time the same for all the moments¹
- Validity because "everything interacts with everything"

Mean field predictions

Mean field solution

The gap λ^* is independent on q

- Confirmed in "typical" numerical simulations
- Powerful result: the convergence time the same for all the moments¹
- Validity because "everything interacts with everything"

But...

we found (uncommon) counterexamples

• (replica?) symmetry breaking in tensor powers

¹For certain choices of the norm...

Exactly solvable model: symmetric case

$$\mathcal{L}_{q} = -i \sum_{\alpha} (a^{\dagger}_{\alpha\uparrow} a_{\alpha+1,\uparrow} - a^{\dagger}_{\alpha\downarrow} a_{\alpha+1,\downarrow} + h.c.) - \frac{\sigma}{2} (n^{\uparrow}_{1} - n^{\downarrow}_{1}) (n^{\uparrow}_{1} - n^{\downarrow}_{1})$$

Exactly solvable model: symmetric case

Strong driving limit $\sigma \gg 1$

$$egin{aligned} &\mathcal{K}_i^+ = \widetilde{a}_{i\uparrow}^\dagger \widetilde{a}_{i\downarrow}^\dagger \ &\mathcal{K}_i^- = (\mathcal{K}_i^+)^\dagger \ &\mathcal{K}_i^z = (\widetilde{n}_{i\uparrow} + \widetilde{n}_{i\downarrow} + 1)/2 \end{aligned}$$

SU(1,1) Richardson-Gaudin model

$$\hat{\mathcal{L}}_q = \frac{2}{\sigma} - \frac{8}{\sigma} \sum_{k=1}^{L-1} g_k \, K_0 \cdot K_k$$

Exactly solvable model: symmetric case

Spectrum from Bethe Ansatz

$$\lambda = -\frac{2}{\sigma} \left(\sum_{k} g_{k} n_{k} + 4 \sum_{\alpha} \frac{1}{\omega_{\alpha}} \right)$$

 n_k is the number of unpaired particles in mode k

$$\sum_{k} \frac{n_k + 1}{\omega_{\alpha} - 2g_k^{-1}} + \frac{1}{\omega_k} + 2\sum_{\beta \neq \alpha} \frac{1}{\omega_{\alpha} - \omega_{\beta}} = 0$$

Solutions related to the roots of Heine-Stieltjes polynomials, so $2g_{k+1}^{-1}<\omega_\alpha<2g_k^{-1}$

The gap is made with unpaired particles

$$\operatorname{gap} \equiv \lambda^* = \frac{8}{\sigma L} \sin^2\left(\frac{\pi}{L}\right) = \mathcal{O}(L^{-3})$$

L is the length. The gap is independent on q

Exactly solvable model: other cases

Fermionic representation

$$\begin{array}{l} S_j^- = \tilde{a}_{j\uparrow} \tilde{a}_{j\downarrow} \\ S_j^+ = (S_j^-)^{\dagger} \\ S_j^z = (\tilde{a}_{j\uparrow}^{\dagger} \tilde{a}_{j\uparrow} + \tilde{a}_{j\downarrow}^{\dagger} \tilde{a}_{j\downarrow} - 1)/2 \end{array}$$

SU(2) Gaudin model

$$\hat{\mathcal{L}}_q = -\frac{2}{\sigma} + \frac{8}{\sigma} \sum_{k=1}^{L-1} g_k \, S_0 \cdot S_k$$

Exactly solvable model: other cases

Fermionic representation

$$egin{aligned} S_j^- &= \widetilde{a}_{j\uparrow}\widetilde{a}_{j\downarrow}\ S_j^+ &= (S_j^-)^\dagger\ S_j^z &= (\widetilde{a}_{j\uparrow}^\dagger\widetilde{a}_{j\uparrow} + \widetilde{a}_{j\downarrow}^\dagger\widetilde{a}_{j\downarrow} - 1)/2 \end{aligned}$$

SU(2) Gaudin model

$$\hat{\mathcal{L}}_q = -\frac{2}{\sigma} + \frac{8}{\sigma} \sum_{k=1}^{L-1} g_k \, S_0 \cdot S_k$$

Generic case

$$\begin{split} X^{(j)}_{(x,\uparrow),(y,\uparrow)} &= \frac{\tilde{a}^{\dagger}_{jx\uparrow}\tilde{a}_{jy\uparrow} - \tilde{a}_{jy\uparrow}\tilde{a}^{\dagger}_{jx\uparrow}}{2} \ , \\ X^{(j)}_{(x,\downarrow),(y,\downarrow)} &= \frac{\tilde{a}_{jx\downarrow}\tilde{a}^{\dagger}_{jy\downarrow} - \tilde{a}^{\dagger}_{jy\downarrow}\tilde{a}_{jx\downarrow}}{2} \ , \\ X^{(j)}_{(x,\uparrow),(y,\downarrow)} &= \tilde{a}^{\dagger}_{jx\uparrow}W\tilde{a}^{\dagger}_{jy\downarrow} \ , \\ X^{(j)}_{(x,\downarrow),(y,\uparrow)} &= \tilde{a}_{jx\downarrow}W\tilde{a}_{jy\uparrow} \ . \end{split}$$

SU(2q) Gaudin model
$$\hat{\mathcal{L}}_q = -\frac{2q}{\sigma} + \frac{4}{\sigma} \sum_{k=1}^{L-1} g_k \sum_{\alpha\beta} X^{(0)}_{\alpha\beta} X^{(k)}_{\beta\alpha} ,$$

Exactly solvable model: generic cases

Spectrum from Bethe Ansatz

$$\lambda = -\frac{2}{\sigma} \left[\sum_{k=1}^{L-1} g_k \left(n_{\downarrow k} + n_{\uparrow k} \right) + 4 \sum_{\alpha} \frac{1}{\omega_{q,\alpha}} \right]$$

 n_k is the number of unpaired particles in mode k

$$\sum_{\beta} \frac{2}{\omega_{j,\beta} - \omega_{j,\alpha}} = \sum_{k=0}^{L-1} \frac{\mu_j^k}{z_k - \omega_{j,\alpha}} + \sum_{\beta,\pm} \frac{1}{\omega_{j\pm 1,\beta} - \omega_{j,\alpha}}$$

Exactly solvable model: generic cases

Final result

- Gap independent on q
- Mean field analysis is rigorous

Numerical check

Finally?

Putting things together

- We need full controllability
- All the moments (typically) converge at the same time
- Open quantum system theory to estimate this time

Numerical tests with stochastic pulse

$$g(t) = \sum_{k=1}^{K} A_k \cos(\omega_k t + \varphi_k)$$

Angle decomposition

$$dU(\varphi_1,\ldots,\varphi_{L^2})=\prod_{j=1}^{L^2}d\varphi_j$$
,

Numerical tests with stochastic pulse

Fully controllable case, after the blending time

Answered this question

When, and how rapidly, a quantum system subject to dynamical noise produces a fully-random (i.e. Haar-uniform) distribution of unitary evolutions?

Different tools from

- quantum information (quantum control, *q*-design)
- open quantum systems (dynamical semigroup, "low energy" Liouvilleans)
- condensed matter physics (Bethe ansatz, mean field in replica space)

Explicit applications:

- Boson sampling experiments
- Estimation of the control time
- Entanglement generation in many-body settings

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)

Questions?

Yes, it blends!