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collision models of open quantum systems dynamics

the environment consists of a very large
number of identical subsistems, dubbed
“ancillas”, initially all in the same state - N
the system environment interaction 062} ¥ [~
takes place via a sequence of “collisions” \
between the system and the ancillas i.e.
via pairwise short unitary interactions

lasting a short time

equivalent to standard Born-Markov

approximation W=V
the collision time Tplays the role of the

coherence time for the environment

p=—i[H,p|+D(L)p,
1 = |eo){eo|

Ly = (ex|Vleo)/T/h

jump operator

A

BTl — (Lilprplil),

master equation in Lindbad form



the unraveling

e tracing over the environment leads
to a master equation giving
information on the average
behaviour of the system

e if the environment is measured at
each step the system undergoes a
series of jumps

e the master equation is recovered as
an average over the unraveling, i.e.
as an average ove different histories

e different detections can give rise to
different unraveling describing the
same master equation

[PYlea) = |)leo) — V7Y Lilw)ler) — (7/2) ) LiLi|v)|eo)

k



|8 Selected for a Viewpoint in Physics e
PRL 104, 160601 (2010) PHYSICAL REVIEW LETTERS 23 APRIL 2010

Thermodynamics of Quantum Jump Trajectories

Juan P. Garrahan and Igor Lesanovsky

School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
(Received 17 November 2009; revised manuscript received 2 March 2010; published 19 April 2010)

P,(K) = Ti[p® (9] = e 1K/, (2)

The ‘““large-deviation” function ¢(k) (k = K/t) contains
all information about the probability of K at long times [2].
Alternatively, we can describe the statistics of K via the
generating function, which also has a LD form [2],

Zis) Pl o) (3)
K=0

Derivatives of 6(s) give moments of the photon number
distribution. In particular, the average number of emitted
photons is k, = (K)/t = —6'(0), and the Mandel parame-
ter- 0 = (K= K /(K) 1 — = 67(0)/0(0). The
LD function around s = 0 encodes the information about
fluctuations of typical trajectories [4,10].
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FIG. 1 (color online). (A) Laser driven 2-level system coupled
to a T = 0 bath. (B) Large-deviation function 6(s). Dynamical
trajectories go from more active to less active as s, the conjugate
field to the number of emitted photons K, is increased, as shown
by the average photon rate k(s) = (K),/t = —6'(s). The Mandel
parameter Q(s) = —2/3 for all s, indicating that for x = 4()
trajectories display a form of scale invariance. (C) The photon
count probability is obtained from (5) by a Legendre transform:
P,(K) = e '*&/1) with ¢(k) = 3[kIn(k/kg) — (k — ko)]. It is a
v =3 Conway-Maxwell-Poisson distribution [20], P,(K) <«
[Poisson(K; ). (D) Representative trajectories from subensem-
bles with different average k.

B
0(s) 02—+
04 -0 SR O & 4
I I ; >s
Mo
92-Ieve|
Q(s)/10
2-level E H
A k=0.02
e o) J_ =] 1 S ||| || | | | |
BWk=0.74

FIG. 2 (color online). (A) Laser driven 3-level system. Here
k; = 40, and Q, = Q,/10. (B, C) The LD function 6(s) and
dynamical order parameter k(s) display crossover behavior near
s = 0 between active and inactive dynamical regimes. The
active side is antibunched, Q < 0. The inactive side is non-
fluctuating Q = 0. The peak in Q near s = 0 signals the dy-
namical crossover. (D) The fat tail for k <k, in P,(K) is a
manifestation of the inactive regime; the thin tail for £ > k; is a
manifestation of the active regime. (E) Representative trajecto-
ries from inactive and active subensembles. At s = O there is
(mesoscopic) coexistence of the two dynamical regimes and
typical trajectories are intermittent or ‘‘blinking.”



Quantum jump statistics with a shifted jump arXiv:1906.01007v1 [quant-ph| 3 Jun 2019
operator in a chiral waveguide
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Resonance Fluorescence

o= e

A

DG = B = LB e

where the driving Hamiltonian H and jump operator L are respectively given by
H=Q(6,+6.), = e . (3)

ME (1) can be "unraveled” in terms of (3) by expressing its solution at time ¢ as
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where we defined the superoperators
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A class of unravelings for the resonance fluorescence ME (3) is defined by
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Figure 1. Waveguide-QED setup to implement unraveling (8) with shifted jump
operator. A two-level atom is coupled to a chiral waveguide, sustaining a one-
dimensional field that propagates in one direction only. The atom is driven by two
continuous-wave coherent beams: one with Rabi frequency {2 — /7 a propagating out
of the waveguide and another one of amplitude « traveling along of the waveguide.
Photons are counted at one end of the waveguide: the detector senses light emitted
from the atom superposed with the coherent wave «.
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Figure 2. Mandel Q parameter QQ(s) as a function of a for Q = 0.1 (a), 2 = 0.25
(b), 2 =1 (c) and Q = 5 (d) (we set v = 1). Each curve was obtained through a
mesh of the s-axis and numerical diagonalization of (13), from which (s) was inferred
by selecting the largest eigenvalue. The s-dependent Mandel QQ parameter Q(s) was
determined using Egs. (16) after applying the finite difference method to compute the
derivatives of 6(s).



