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• the environment consists of a very large 
number of identical subsistems, dubbed 
“ancillas”, initially all in the same state 

• the system environment interaction 
takes place via a sequence of “collisions” 
between the system and the ancillas i.e. 
via pairwise short unitary interactions 
lasting a short time

• equivalent to standard Born-Markov 
approximation

• the collision time    plays the role of the 
coherence time for the environment 
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Quantum jump statistics with a shifted jump operator in a chiral waveguide 3

counting times, which enables prompt computation via large deviation theory [16] of

the scaled cumulant generating function, hence all the moments of the photon counting

distribution. We show that, depending on the parameters, the Mandel Q parameter

can take on positive or negative values or vanish, thus exhibiting signatures of super-

Poissonian, sub-Poissonian or Poissonian statistics. The considered unraveling with

shifted jump operator – which in free space does not correspond to realistic detection

schemes (at least in an obvious way) – is shown to describe the photon counting statistics

in a chiral waveguide coupled to an atom [17], which is driven at once by a classical field

(external to the waveguide) and a coherent beam travelling along the waveguide.

This paper is organized as follows. In Section 2, we briefly review basic notions of

quantum trajectories and counting statistics in the specific context of standard resonance

fluorescence. In Section 3, we introduce the unraveling in terms of a shifted jump

operator and discuss its implementation in a waveguide-QED setup. In Section 4, we

briefly review the large-deviation-theory approach to work out all the moments of the

photon counting distribution for long counting times. In Section 5, we investigate the

quantum jump statistics as a function of the jump operator shift by analyzing the

behavior of the Mandel Q parameter in some paradigmatic instances. Finally, we draw

our conclusions in Section 6 .

2. Quantum jump statistics in standard resonance fluorescence

Consider a two-level atom, with ground (excited) state |gi (|ei) and associated ladder

operators �̂� = �̂
†
+ = |gihe|, which is driven by a classical oscillating field with Rabi

frequency ⌦ and resonant with the atom. The atom is at the same time subject to

spontaneous emission with decay rate �. In a frame rotating at the drive frequency, the

atomic state ⇢ evolves in time according to the Lindblad master equation (ME) [18, 19]

⇢̇ = �i [Ĥ, ⇢] + D(L̂) ⇢ , (1)

(we set ~ = 1 throughout) with

D(L̂) ⇢ = L̂ ⇢ L̂
† � 1

2 (L̂
†
L̂⇢+ ⇢ L̂

†
L̂) , (2)

where the driving Hamiltonian Ĥ and jump operator L̂ are respectively given by

Ĥ = ⌦ (�̂+ + �̂�) , L̂ =
p
� �̂� . (3)

ME (1) can be ”unraveled” in terms of (3) by expressing its solution at time t as

⇢t = Rt⇢0 +
1X

K=1

Z
t

0

dtK · · ·
Z

t2

0

dt1 Rt�tKJ RtK�tK�1 · · · J Rt2�t1J Rt1⇢0 , (4)

where we defined the superoperators

Rt ⇢ = e
�i

✓
Ĥ� i
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⇢ e
i
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Ĥ� i
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, J ⇢ = L̂ ⇢ L̂
†
. (5)
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master equation in Lindbad formjump operator



the unraveling
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• tracing over the environment leads 
to a master equation giving 
information on the average 
behaviour of the system

• if the environment is measured at 
each step the system undergoes a 
series of jumps

• the master equation is recovered as 
an average over the unraveling, i.e. 
as an average ove different histories

• different detections can give rise to 
different unraveling describing the 
same master equation
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We apply the large-deviation method to study trajectories in dissipative quantum systems. We show that

in the long time limit the statistics of quantum jumps can be understood from thermodynamic arguments

in terms of dynamical phases and transitions between them in trajectory space. We illustrate our approach

with three simple examples: a driven 2-level system where we find a particular scale invariance point in

the ensemble of trajectories of emitted photons; a blinking 3-level system, where we argue that

intermittency in the photon count is related to a crossover between distinct dynamical phases; and a

micromaser, where we find an actual first-order phase transition in the ensemble of trajectories.
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Introduction.—Equilibrium statistical mechanics pro-
vides the tools to study equilibrium phases and phase
changes in many-body systems [1]. Thermodynamic
phases are characterized by the average values of thermo-
dynamic observables, such as the volume in a liquid or
magnetization in a magnet, which are controlled by con-
jugate fields, such as pressure or magnetic field.
Nonanalyticities in free-energies correspond to phase-
transition points, and the proximity to a phase-transition
manifests in large and rare fluctuations of observables
around their thermodynamic values [1].

An analogous perspective can be adopted for the study
of dynamical phases in nonequilibrium systems by apply-
ing the large-deviation (LD) method [2]. The LD formal-
ism allows us to treat ensembles of trajectories, classified
by dynamical order parameters or their conjugate fields, in
the same way that equilibrium statistical mechanics treats
ensembles of configurations. Important properties of clas-
sical nonequilibrium systems can be uncovered by exploit-
ing this analogy [2– 4], such as the existence of ‘‘space-
time’’ phase transitions in glassy systems [5].

In this Letter, we apply the LD method to quantum
nonequilibrium systems. This approach reveals important
properties of ensembles of trajectories of quantum systems
that undergo quantum jumps in some form, such as driven
quantum systems weakly coupled to a thermal bath [6,7].
We show that one can observe features of dynamical cross-
overs and dynamical phase transitions even in quantum
systems with only a few degrees of freedom, and illustrate
our ideas with three simple examples: a driven 2-level
system; a blinking 3-level system (or electron shelving
problem); and a micromaser. We also establish a mapping
between two dynamical systems, where typical trajectories
of one are the rare trajectories of the other. This is particu-
larly useful for generating rare trajectories which otherwise
are highly suppressed.

Formalism.—We consider a quantum system weakly
coupled to a reservoir in the Markovian regime. The non-
unitary evolution of its density matrix !ðtÞ is described by a
so-called master equation [8,9],

d

dt
!ðtÞ ¼ !i½H;!& þ

XNL

"¼1

!
L"!L

y
" ! 1

2
fLy

"L" ;!g
"
; (1)

where L" and Ly
" (" ¼ 1; . . . ; NL) are the Lindblad op-

erators [8,9], f(;(gstands for an anticommutator, and we
have set @ ¼ 1. We are interested in the time record of
events such as photon emissions. In the formalism of
Eq. (1), these correspond to projection events due to the
action of one (or more) of the Lindblad operators. We
assume these events are detected with 100% efficiency.
Such a record is a particular quantum jump trajectory of the
system [7,9]. The probability PtðKÞ to observe K events
after time t is given by PtðKÞ ¼ Tr½!ðKÞðtÞ&, where !ðKÞðtÞ
is a reduced density matrix obtained by the projection of
the full density matrix onto the subspace of K events, e.g.,
the subspace containing K photons [6]. For large times
PtðKÞ acquires a LD form [2]:

PtðKÞ ¼ Tr½!ðKÞðtÞ& ) e!t’ðK=tÞ: (2)

The ‘‘large-deviation’’ function ’ðkÞ (k * K=t) contains
all information about the probability of K at long times [2].
Alternatively, we can describe the statistics of K via the
generating function, which also has a LD form [2],

ZtðsÞ *
X1

K¼0

PtðKÞe!sK ) et#ðsÞ: (3)

The LD functions ’ðkÞ and #ðsÞ are to trajectories [4,5]
what entropy density and free-energy density are to con-
figurations in equilibrium statistical mechanics [1], with s
being the conjugate field to the dynamical order parameter
K. The two are related by a Legendre transform, #ðsÞ ¼
!mink½’ðkÞ þ ks&, and the function #ðsÞ has the convexity
properties of (minus) a free-energy. Moreover, anomalous
dependence of #ðsÞ on s indicates nontrivial fluctuation
properties of dynamical trajectories. In particular, singu-
larities in #ðsÞ correspond to dynamical (or space-time [5])
phase transitions. It is this anomalous and phase-transition
behavior that we uncover below by calculating #ðsÞ for
simple driven quantum systems.
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Introduction.—Equilibrium statistical mechanics pro-
vides the tools to study equilibrium phases and phase
changes in many-body systems [1]. Thermodynamic
phases are characterized by the average values of thermo-
dynamic observables, such as the volume in a liquid or
magnetization in a magnet, which are controlled by con-
jugate fields, such as pressure or magnetic field.
Nonanalyticities in free-energies correspond to phase-
transition points, and the proximity to a phase-transition
manifests in large and rare fluctuations of observables
around their thermodynamic values [1].

An analogous perspective can be adopted for the study
of dynamical phases in nonequilibrium systems by apply-
ing the large-deviation (LD) method [2]. The LD formal-
ism allows us to treat ensembles of trajectories, classified
by dynamical order parameters or their conjugate fields, in
the same way that equilibrium statistical mechanics treats
ensembles of configurations. Important properties of clas-
sical nonequilibrium systems can be uncovered by exploit-
ing this analogy [2– 4], such as the existence of ‘‘space-
time’’ phase transitions in glassy systems [5].

In this Letter, we apply the LD method to quantum
nonequilibrium systems. This approach reveals important
properties of ensembles of trajectories of quantum systems
that undergo quantum jumps in some form, such as driven
quantum systems weakly coupled to a thermal bath [6,7].
We show that one can observe features of dynamical cross-
overs and dynamical phase transitions even in quantum
systems with only a few degrees of freedom, and illustrate
our ideas with three simple examples: a driven 2-level
system; a blinking 3-level system (or electron shelving
problem); and a micromaser. We also establish a mapping
between two dynamical systems, where typical trajectories
of one are the rare trajectories of the other. This is particu-
larly useful for generating rare trajectories which otherwise
are highly suppressed.

Formalism.—We consider a quantum system weakly
coupled to a reservoir in the Markovian regime. The non-
unitary evolution of its density matrix !ðtÞ is described by a
so-called master equation [8,9],
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have set @ ¼ 1. We are interested in the time record of
events such as photon emissions. In the formalism of
Eq. (1), these correspond to projection events due to the
action of one (or more) of the Lindblad operators. We
assume these events are detected with 100% efficiency.
Such a record is a particular quantum jump trajectory of the
system [7,9]. The probability PtðKÞ to observe K events
after time t is given by PtðKÞ ¼ Tr½!ðKÞðtÞ&, where !ðKÞðtÞ
is a reduced density matrix obtained by the projection of
the full density matrix onto the subspace of K events, e.g.,
the subspace containing K photons [6]. For large times
PtðKÞ acquires a LD form [2]:

PtðKÞ ¼ Tr½!ðKÞðtÞ& ) e!t’ðK=tÞ: (2)

The ‘‘large-deviation’’ function ’ðkÞ (k * K=t) contains
all information about the probability of K at long times [2].
Alternatively, we can describe the statistics of K via the
generating function, which also has a LD form [2],

ZtðsÞ *
X1

K¼0

PtðKÞe!sK ) et#ðsÞ: (3)

The LD functions ’ðkÞ and #ðsÞ are to trajectories [4,5]
what entropy density and free-energy density are to con-
figurations in equilibrium statistical mechanics [1], with s
being the conjugate field to the dynamical order parameter
K. The two are related by a Legendre transform, #ðsÞ ¼
!mink½’ðkÞ þ ks&, and the function #ðsÞ has the convexity
properties of (minus) a free-energy. Moreover, anomalous
dependence of #ðsÞ on s indicates nontrivial fluctuation
properties of dynamical trajectories. In particular, singu-
larities in #ðsÞ correspond to dynamical (or space-time [5])
phase transitions. It is this anomalous and phase-transition
behavior that we uncover below by calculating #ðsÞ for
simple driven quantum systems.
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The !ðKÞðtÞ obey a set of equations [6], which is un-
coupled by the Laplace transform (3). That is, the equation
for !sðtÞ #

P1
K¼0 !

ðKÞðtÞe%sK reads d
dt!sðtÞ ¼ W sð!sÞ,

where the superoperator W s is

Wsð!Þ ¼ %i½H;!' þ e%sL1!L
y
1

þ
XNL

"¼2

L"!L
y
" % 1

2

XNL

"¼1

fLy
"L" ;!g: (4)

L1 is the Lindblad operator which produces the quantum
jumps we are counting inK. The equation @t! ¼ W sð!Þ is
sometimes called the generalized quantummaster equation
[10,11]. The operator W s is analogous to the Lebowitz-
Spohn operator [12] of classical nonequilibrium dynamics.
Physical dynamics takes place at s ¼ 0 [here W s ¼ W ,
see Eqs. (1) and (4)]. For s ! 0, @t! ¼ W sð!Þ describes a
time evolution whose unfolding [6,7,13] generates an en-
semble of trajectories biased by e%sK; see Eq. (3). We call
this the s ensemble [5]. Provided that PtðKÞ obeys Eq. (2)
with ’ real, then in the long time limit #ðsÞ is given by the
largest real eigenvalue of W s [2].

2-level system.—Consider a 2-level system, Fig. 1(a),
driven by a resonant laser in contact with a zero tem-
perature bath [9]. When the observable K is the number
of emitted photons the generalized master operator is
W sð!Þ ¼ %i!½a þ ay; !' þ e%s$a!ay % $

2 faya; !g,
where a and ay are the lowering and raising operators,
j0ih1j and j1ih0j, respectively, ! is the Rabi frequency,
and $ is the decay rate. We consider the specific choice
$ ¼ 4!, which is interesting for reasons we discuss below.
Here the LD function takes the simple form

#ðsÞ ¼ %2!ð1% e%s=3Þ; (5)

which is shown in Fig. 1(b). It vanishes at s ¼ 0. This is a
statement of conservation of probability: W 0 reduces to
the master operator of Eq. (1) which leaves Tr½!' invariant.
Derivatives of #ðsÞ give moments of the photon number
distribution. In particular, the average number of emitted
photons is k0 # hKi=t ¼ %#0ð0Þ, and the Mandel parame-
ter, Q 0 # ðhK2i%hKi2Þ=hKi% 1 ¼ %#00ð0Þ=#0ð0Þ. The
LD function around s ¼ 0 encodes the information about
fluctuations of typical trajectories [4,10].

Away from s ¼ 0, #ðsÞ encodes information about rare
trajectories. Consider the s-dependent average photon
number (per unit time),

kðsÞ # hKis
t

¼ 1

tZtðsÞ
X

K

KPtðKÞe%sK ¼ %#0ðsÞ:

This expression is the average ofK=twhere the probability
of trajectories is biased by the factor e%sK. Pursuing a
thermodynamic analogy, think of K and s as volume and
pressure. Increasing (dereasing) the pressure leads to a
smaller (larger) average specific volume; i.e., by control-
ling pressure we obtain a denser or less dense system.
Something analogous occurs here in the dynamics: s > 0
corresponds to trajectories with kðsÞ< k0, i.e., less active

than typical, while s < 0 corresponds to trajectories with
kðsÞ> k0, i.e., more active than typical, Fig. 1(b).
We can also define an s-dependent Mandel parameter,

Q ðsÞ # ðhK2is %hKi2sÞ=hKis % 1 ¼ %#00ðsÞ=#0ðsÞ % 1,
which measures the bunching or antibunching properties of
trajectories with a fixed average photon number tkðsÞ. For
the specific case of $ ¼ 4! we have kðsÞ ¼ 2!e%s=3=3
(i.e., trajectories go from more to less active as s is in-
creased from negative to positive), butQ ðsÞ ¼ %2=3 for all
s, Fig. 1(b). This result is surprising. We expect photon
emissions to be antibunched [9], but an s-independent Q
indicates that all subensembles of trajectories, no matter
how active or inactive, have the same fluctuation properties
of typical trajectories: trajectories would look the same if
rescaled by their average emission rate. Hence $ ¼ 4! is a
‘‘special point’’ in parameter space where the dynamics
displays trajectory scale invariance. Note that this occurs
while all correlation times remain finite.
3-level system.—Consider now a 3-level system like

the one of Fig. 2(a), driven by two resonant lasers on the
j0i% j1i and j0i% j2i lines with Rabi frequencies !1 and
!2, respectively. Level j1i decays to j0i with rate $1. We
are interested in the statistics of the number K of photons
emitted. When !1 ) !2 typical photon emission trajec-
tories are intermittent, displaying ‘‘bright’’ and ‘‘dark’’
periods [7,14]. In this case quantum jumps can become
evident on macroscopic timescales [15].
The generalized master operator W s is of the form (4),

with H ¼ P2
j¼1 !jðaj þ ayj Þ, where aj # j0ihjj and ayj #

jjih0j, and only one set of Lindblad terms, NL ¼ 1, with

FIG. 1 (color online). (A) Laser driven 2-level system coupled
to a T ¼ 0 bath. (B) Large-deviation function #ðsÞ. Dynamical
trajectories go from more active to less active as s, the conjugate
field to the number of emitted photons K, is increased, as shown
by the average photon rate kðsÞ # hKis=t ¼ %#0ðsÞ. The Mandel
parameter Q ðsÞ ¼ %2=3 for all s, indicating that for $ ¼ 4!
trajectories display a form of scale invariance. (C) The photon
count probability is obtained from (5) by a Legendre transform:
PtðKÞ * e%t’ðK=tÞ with ’ðkÞ ¼ 3½k ln ðk=k0Þ % ðk% k0Þ'. It is a
% ¼ 3 Conway-Maxwell-Poisson distribution [20], PtðKÞ /
½PoissonðK; tÞ'3. (D) Representative trajectories from subensem-
bles with different average k.
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jumps we are counting inK. The equation @t! ¼ W sð!Þ is
sometimes called the generalized quantummaster equation
[10,11]. The operator W s is analogous to the Lebowitz-
Spohn operator [12] of classical nonequilibrium dynamics.
Physical dynamics takes place at s ¼ 0 [here W s ¼ W ,
see Eqs. (1) and (4)]. For s ! 0, @t! ¼ W sð!Þ describes a
time evolution whose unfolding [6,7,13] generates an en-
semble of trajectories biased by e%sK; see Eq. (3). We call
this the s ensemble [5]. Provided that PtðKÞ obeys Eq. (2)
with ’ real, then in the long time limit #ðsÞ is given by the
largest real eigenvalue of W s [2].

2-level system.—Consider a 2-level system, Fig. 1(a),
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perature bath [9]. When the observable K is the number
of emitted photons the generalized master operator is
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j0ih1j and j1ih0j, respectively, ! is the Rabi frequency,
and $ is the decay rate. We consider the specific choice
$ ¼ 4!, which is interesting for reasons we discuss below.
Here the LD function takes the simple form

#ðsÞ ¼ %2!ð1% e%s=3Þ; (5)

which is shown in Fig. 1(b). It vanishes at s ¼ 0. This is a
statement of conservation of probability: W 0 reduces to
the master operator of Eq. (1) which leaves Tr½!' invariant.
Derivatives of #ðsÞ give moments of the photon number
distribution. In particular, the average number of emitted
photons is k0 # hKi=t ¼ %#0ð0Þ, and the Mandel parame-
ter, Q 0 # ðhK2i%hKi2Þ=hKi% 1 ¼ %#00ð0Þ=#0ð0Þ. The
LD function around s ¼ 0 encodes the information about
fluctuations of typical trajectories [4,10].

Away from s ¼ 0, #ðsÞ encodes information about rare
trajectories. Consider the s-dependent average photon
number (per unit time),

kðsÞ # hKis
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¼ 1
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This expression is the average ofK=twhere the probability
of trajectories is biased by the factor e%sK. Pursuing a
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pressure. Increasing (dereasing) the pressure leads to a
smaller (larger) average specific volume; i.e., by control-
ling pressure we obtain a denser or less dense system.
Something analogous occurs here in the dynamics: s > 0
corresponds to trajectories with kðsÞ< k0, i.e., less active

than typical, while s < 0 corresponds to trajectories with
kðsÞ> k0, i.e., more active than typical, Fig. 1(b).
We can also define an s-dependent Mandel parameter,

Q ðsÞ # ðhK2is %hKi2sÞ=hKis % 1 ¼ %#00ðsÞ=#0ðsÞ % 1,
which measures the bunching or antibunching properties of
trajectories with a fixed average photon number tkðsÞ. For
the specific case of $ ¼ 4! we have kðsÞ ¼ 2!e%s=3=3
(i.e., trajectories go from more to less active as s is in-
creased from negative to positive), butQ ðsÞ ¼ %2=3 for all
s, Fig. 1(b). This result is surprising. We expect photon
emissions to be antibunched [9], but an s-independent Q
indicates that all subensembles of trajectories, no matter
how active or inactive, have the same fluctuation properties
of typical trajectories: trajectories would look the same if
rescaled by their average emission rate. Hence $ ¼ 4! is a
‘‘special point’’ in parameter space where the dynamics
displays trajectory scale invariance. Note that this occurs
while all correlation times remain finite.
3-level system.—Consider now a 3-level system like

the one of Fig. 2(a), driven by two resonant lasers on the
j0i% j1i and j0i% j2i lines with Rabi frequencies !1 and
!2, respectively. Level j1i decays to j0i with rate $1. We
are interested in the statistics of the number K of photons
emitted. When !1 ) !2 typical photon emission trajec-
tories are intermittent, displaying ‘‘bright’’ and ‘‘dark’’
periods [7,14]. In this case quantum jumps can become
evident on macroscopic timescales [15].
The generalized master operator W s is of the form (4),

with H ¼ P2
j¼1 !jðaj þ ayj Þ, where aj # j0ihjj and ayj #

jjih0j, and only one set of Lindblad terms, NL ¼ 1, with

FIG. 1 (color online). (A) Laser driven 2-level system coupled
to a T ¼ 0 bath. (B) Large-deviation function #ðsÞ. Dynamical
trajectories go from more active to less active as s, the conjugate
field to the number of emitted photons K, is increased, as shown
by the average photon rate kðsÞ # hKis=t ¼ %#0ðsÞ. The Mandel
parameter Q ðsÞ ¼ %2=3 for all s, indicating that for $ ¼ 4!
trajectories display a form of scale invariance. (C) The photon
count probability is obtained from (5) by a Legendre transform:
PtðKÞ * e%t’ðK=tÞ with ’ðkÞ ¼ 3½k ln ðk=k0Þ % ðk% k0Þ'. It is a
% ¼ 3 Conway-Maxwell-Poisson distribution [20], PtðKÞ /
½PoissonðK; tÞ'3. (D) Representative trajectories from subensem-
bles with different average k.
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L1 ¼
ffiffiffiffiffiffi
!1

p
a1. The LD function "ðsÞ is obtained from Ws

by direct diagonalization. It is shown in Fig. 2(b) for !1 ¼
4!1 and !2 ¼ !1=10. The difference with the 2-level
case is striking. For s < 0 (i.e., trajectories more active
than typical) "ðsÞ follow the LD function of the 2-level
problem. Close to s ¼ 0, however, "ðsÞ leaves the 2-level
curve and approaches a constant, "ðs $ 0Þ % &!1!

2
2.

This indicates a rapid crossover between two distinct
dynamical phases as we cross s ¼ 0. Figure 2(c) shows the
corresponding change in kðsÞ. The active side is that of s <
0, and trajectories have large K. The inactive side is s > 0,
and trajectories have small K. The active phase is that of
the 2-level system j0i, j1i where photon emission is plen-
tiful. In the inactive phase the atom predominantly occu-
pies the j2i state and photon emission is scarce. The
crossover in kðsÞ is reminiscent of a (smoothed) dynamical
first-order transition, such as that seen in the trajectories of
certain glassy systems [5]. The dynamical crossover is also
apparent in the Mandel parameter, Fig. 2(c). The active
phase is antibunched, Qðs ' 0Þ ¼ &2=3, while the inac-
tive phase does not fluctuate, Qðs $ 0Þ ¼ 0. The peak in
QðsÞ around s ¼ 0 is a signature of the crossover between
phases: here fluctuations are maximal as trajectories are
(mesoscopic, i.e., finite time) mixtures of the two coexist-
ing phases. Typical trajectories correspond to s ¼ 0, but
the crossover structure of the LD function "ðsÞ has an
effect on the tails of the distribution PtðKÞ, as shown in
Fig. 2(d). It has a fat tail for k < hKi=t [originating from
" & 0 for s $ 0], and a thin tail for large k [originating
from " % "2-level for s ' 0].

Micromaser.—We now consider the problem of a micro-
maser [16], a resonant single-mode cavity coupled to a

finite temperature bath and pumped by excited 2-level
atoms which are sent into the cavity with a constant rate,
Fig. 3(a). The steady state of the cavity can change from
unimodal to bimodal depending on the pump rate and
atom-cavity coupling [16]. We now show that this static
bistability has an associated dynamic bistability [17].
Our dynamical order parameter K is now the number of

atoms which leave the cavity and are in the ground state.
The superoperator W s (4) follows from the Lindblad
master equation for the cavity after tracing out the atom
and the thermal bath [16]. There are four sets of Lindblad
operators, NL ¼ 4, two from the atom-cavity interaction,

L1 ¼
ffiffiffi
r

p sinð#
ffiffiffiffiffiffi
aay

p
Þffiffiffiffiffiffi

aay
p a and L2 ¼

ffiffiffi
r

p
cosð#

ffiffiffiffiffiffiffiffiffi
aay

p
Þ, and two

from the cavity-bath interaction, L3 ¼
ffiffiffiffi
!

p
a and L4 ¼ffiffiffiffi

$
p

ay. Here a, ay are the raising/lowering operators of
the cavity mode, r is the atom beam rate, ! and $ are the
thermal relaxation and excitation rates, and # encodes the
atom-cavity interaction [16]. Events are recorded when
quantum jumps under the action of L1 occur.
The LD function "ðsÞ can be obtained by assuming that

the corresponding eigenmatrix rs of W s (see below) is
diagonal in aya [16]. It is shown in Figs. 3(b) and 3(c) for

two values of the ‘‘pump parameter’’ % ( #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð!& $Þ

p

[16]. For % ¼ 2& the stationary state of the cavity is close
to being bistable, undergoing a sudden change from a low
average photon occupation hNi at % & 2& to a large hNi at
% * 2& [16]. In this case the LD function is singular at s ¼
0, and kðsÞ has a discontinuous jump, Fig. 3(c). This is a
first-order dynamic, or space-time, phase transition [5],

FIG. 2 (color online). (A) Laser driven 3-level system. Here
!1 ¼ 4!1 and !2 ¼ !1=10. (B, C) The LD function "ðsÞ and
dynamical order parameter kðsÞ display crossover behavior near
s ¼ 0 between active and inactive dynamical regimes. The
active side is antibunched, Q< 0. The inactive side is non-
fluctuating Q ¼ 0. The peak in Q near s ¼ 0 signals the dy-
namical crossover. (D) The fat tail for k < k0 in PtðKÞ is a
manifestation of the inactive regime; the thin tail for k > k0 is a
manifestation of the active regime. (E) Representative trajecto-
ries from inactive and active subensembles. At s ¼ 0 there is
(mesoscopic) coexistence of the two dynamical regimes and
typical trajectories are intermittent or ‘‘blinking.’’

FIG. 3 (color online). Dynamical phase transition in the micro-
maser. (A) Cavity mode driven by pumped atoms and interacting
with thermal bath. (B, C) LD function "ðsÞ for the number of
atomic transitions, K. When the cavity is close to static bista-
bility, % ¼ 2&, the LD function has a first-order singularity at
s ¼ 0. There are two distinct dynamical phases, a more active
one with large K, and a less active one with small K. Typical
trajectories are at coexistence between these phases. The dy-
namical transition is still present far from static bistability, % ¼
1:2&, but the transition point is at s < 0; i.e., dynamical coex-
istence will be only manifest in rare trajectories. (D) Cavity
photon distribution in active and inactive phases, and at coex-
istence (i.e., the stationary density matrix).
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via
A

rch
irafi

36,
I-90123

P
alerm

o,
Italy

2N
E

S
T

,
Istitu

to
N

an
oscien

ze-C
N

R
,
P

iazza
S
.
S
ilvestro

12,
56127

P
isa,

Italy

E
-m

ail:
d
a
r
i
o
.
c
i
l
l
u
f
f
o
@
u
n
i
p
a
.
i
t

A
p
ril

2019

A
b
stra

ct.
R

eson
an

ce
fl
u
orescen

ce,
con

sistin
g

of
light

em
ission

from
an

atom
d
riven

by
a

classical
oscillatin

g
fi
eld

,
is

w
ell-kn

ow
n

to
yield

a
su

b
-P

oisson
ian

p
h
oton

cou
ntin

g

statistics.
T

h
is

occu
rs

w
h
en

on
ly

em
itted

light
is

d
etected

,
w

h
ich

corresp
on

d
s

to
a

m
aster

equ
ation

(M
E

)
u
n
ravelin

g
in

term
s

of
th

e
can

on
ical

ju
m

p
op

erator
d
escrib

in
g

sp
ontan

eou
s

d
ecay.

F
orm

ally,
an

altern
ative

M
E

u
n
ravelin

g
is

p
ossib

le
in

term
s

of
a

sh
ifted

ju
m

p
op

erator.
W

e
sh

ow
th

at
th

is
sh

ift
can

resu
lt

in
su

b
-P

oisson
ian

,
P
oisson

ian

or
su

p
er-P

oisson
ian

qu
antu

m
ju

m
p

statistics.
T

h
is

is
sh

ow
n

in
term

s
of

th
e

M
an

d
el

Q
p
aram

eter
in

th
e

lim
it

of
lon

g
cou

ntin
g

tim
es,

w
h
ich

is
com

p
u
ted

th
rou

gh
large

d
eviation

th
eory.

W
e

p
resent

a
w

avegu
id

e-Q
E

D
setu

p
,
com

p
risin

g
a

ch
iral

w
avegu

id
e

cou
p
led

to
a

d
riven

atom
,
w

h
ere

p
h
oton

cou
ntin

g
is

d
escrib

ed
by

th
e

con
sid

ered
class

of
sh

ifted
ju

m
p

op
erators.

1
.
In

tro
d
u
ctio

n

A
rem

arkab
le

con
sequ

en
ce

of
th
e
w
ave

fu
n
ction

collap
se

is
occu

rren
ce

of
quan

tum

trajectories
[1,

2,
3,

4]
w
h
en

continu
ou

sly
m
on

itorin
g
th
e
d
yn

am
ics

of
sm

all
qu

antu
m

system
s
su
ch

as
a
sin

gle
atom

.
T
h
ese

are
stoch

astic
d
yn

am
ics

th
at

typ
ically

featu
re

qu
antu

m
ju
m
p
s:

su
d
d
en

ch
an

ges
of

th
e
system

’s
state

occu
rrin

g
at

u
n
p
red

ictab
le
tim

es.

A
s
a
m
a
jor

ach
ievem

ent
of

m
od

ern
qu

antu
m

tech
n
ologies,

ad
d
ressin

g
sm

all
qu

antu
m

system
s
is
n
ow

ad
ays

p
ossib

le, w
h
ich

en
ab

les
ob

servation
of qu

antu
m

ju
m
p
s
an

d
qu

antu
m

tra
jectories

in
th
e
lab

[5,
6].

A
qu

antu
m

tra
jectory

corresp
on

d
s
to

a
sp
ecifi

c
sequ

en
ce

of
m
easu

rem
ent

ou
tcom

es

on
p
rob

es
after

th
at

each
p
rob

e
h
as

w
eakly

an
d

sh
ortly

interacted
w
ith

th
e
system

u
n
d
er

stu
d
y
(w

eak
m
easu

rem
ents)

[4].
A
veragin

g
over

a
large

nu
m
b
er

of
tra

jectories,

n
am

ely
m
easu

rem
ent

ou
tcom

es, resu
lts

in
a
d
eterm

in
istic

evolu
tion

of
th
e
d
en
sity

m
atrix

govern
ed

by
th
e
celeb

rated
L
in
d
b
lad

m
aster

equ
ation

(M
E
)
[7].

N
otab

ly,
th
e
sam

e
M
E

can
b
e
ob

tain
ed

from
d
i↵
erent

d
etection

sch
em

es
(un

ravelin
gs)

corresp
on

d
in
g
to

d
i↵
erent

typ
es

of
w
eak

m
easu

rem
ents.

C
h
an

gin
g
u
n
ravelin

g
can

d
eep

ly
m
od

ify
th
e
n
atu

re
of

arXiv:1906.01007v1  [quant-ph]  3 Jun 2019Quantum jump statistics with a shifted jump
operator in a chiral waveguide

Dario Cillu↵o,1 Salvatore Lorenzo,1 G. Massimo Palma,1,2 and

Francesco Ciccarello1,2
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Abstract. Resonance fluorescence, consisting of light emission from an atom driven
by a classical oscillating field, is well-known to yield a sub-Poissonian photon counting
statistics. This occurs when only emitted light is detected, which corresponds to a
master equation (ME) unraveling in terms of the canonical jump operator describing
spontaneous decay. Formally, an alternative ME unraveling is possible in terms of a
shifted jump operator. We show that this shift can result in sub-Poissonian, Poissonian
or super-Poissonian quantum jump statistics. This is shown in terms of the Mandel
Q parameter in the limit of long counting times, which is computed through large
deviation theory. We present a waveguide-QED setup, comprising a chiral waveguide
coupled to a driven atom, where photon counting is described by the considered class
of shifted jump operators.

1. Introduction

A remarkable consequence of the wave function collapse is occurrence of quantum

trajectories [1, 2, 3, 4] when continuously monitoring the dynamics of small quantum

systems such as a single atom. These are stochastic dynamics that typically feature

quantum jumps: sudden changes of the system’s state occurring at unpredictable times.

As a major achievement of modern quantum technologies, addressing small quantum

systems is nowadays possible, which enables observation of quantum jumps and quantum

trajectories in the lab [5, 6].

A quantum trajectory corresponds to a specific sequence of measurement outcomes

on probes after that each probe has weakly and shortly interacted with the system

under study (weak measurements) [4]. Averaging over a large number of trajectories,

namely measurement outcomes, results in a deterministic evolution of the density matrix

governed by the celebrated Lindblad master equation (ME) [7]. Notably, the same ME

can be obtained from di↵erent detection schemes (unravelings) corresponding to di↵erent

types of weak measurements. Changing unraveling can deeply modify the nature of
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counting times, which enables prompt computation via large deviation theory [16] of

the scaled cumulant generating function, hence all the moments of the photon counting

distribution. We show that, depending on the parameters, the Mandel Q parameter

can take on positive or negative values or vanish, thus exhibiting signatures of super-

Poissonian, sub-Poissonian or Poissonian statistics. The considered unraveling with

shifted jump operator – which in free space does not correspond to realistic detection

schemes (at least in an obvious way) – is shown to describe the photon counting statistics

in a chiral waveguide coupled to an atom [17], which is driven at once by a classical field

(external to the waveguide) and a coherent beam travelling along the waveguide.

This paper is organized as follows. In Section 2, we briefly review basic notions of

quantum trajectories and counting statistics in the specific context of standard resonance

fluorescence. In Section 3, we introduce the unraveling in terms of a shifted jump

operator and discuss its implementation in a waveguide-QED setup. In Section 4, we

briefly review the large-deviation-theory approach to work out all the moments of the

photon counting distribution for long counting times. In Section 5, we investigate the

quantum jump statistics as a function of the jump operator shift by analyzing the

behavior of the Mandel Q parameter in some paradigmatic instances. Finally, we draw

our conclusions in Section 6 .

2. Quantum jump statistics in standard resonance fluorescence

Consider a two-level atom, with ground (excited) state |gi (|ei) and associated ladder

operators �̂� = �̂
†
+ = |gihe|, which is driven by a classical oscillating field with Rabi

frequency ⌦ and resonant with the atom. The atom is at the same time subject to

spontaneous emission with decay rate �. In a frame rotating at the drive frequency, the

atomic state ⇢ evolves in time according to the Lindblad master equation (ME) [18, 19]

⇢̇ = �i [Ĥ, ⇢] + D(L̂) ⇢ , (1)

(we set ~ = 1 throughout) with

D(L̂) ⇢ = L̂ ⇢ L̂
† � 1

2 (L̂
†
L̂⇢+ ⇢ L̂

†
L̂) , (2)

where the driving Hamiltonian Ĥ and jump operator L̂ are respectively given by

Ĥ = ⌦ (�̂+ + �̂�) , L̂ =
p
� �̂� . (3)

ME (1) can be ”unraveled” in terms of (3) by expressing its solution at time t as

⇢t = Rt⇢0 +
1X

K=1

Z
t

0

dtK · · ·
Z

t2

0

dt1 Rt�tKJ RtK�tK�1 · · · J Rt2�t1J Rt1⇢0 , (4)

where we defined the superoperators

Rt ⇢ = e
�i

✓
Ĥ� i

2 L̂
†
L̂

◆
t

⇢ e
i

✓
Ĥ� i

2 L̂
†
L̂

◆
t

, J ⇢ = L̂ ⇢ L̂
†
. (5)
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Ĥ� i

2 L̂
†
L̂

◆
t

⇢ e
i

✓
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⇢̇ = �i [Ĥ, ⇢] + D(L̂) ⇢ , (1)

(we set ~ = 1 throughout) with

D(L̂) ⇢ = L̂ ⇢ L̂
† � 1

2 (L̂
†
L̂⇢+ ⇢ L̂

†
L̂) , (2)
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detector 

↵

atom 

⌦ � p
� ↵

chiral waveguide 

Figure 1. Waveguide-QED setup to implement unraveling (8) with shifted jump
operator. A two-level atom is coupled to a chiral waveguide, sustaining a one-
dimensional field that propagates in one direction only. The atom is driven by two
continuous-wave coherent beams: one with Rabi frequency ⌦ � p

� ↵ propagating out
of the waveguide and another one of amplitude ↵ traveling along of the waveguide.
Photons are counted at one end of the waveguide: the detector senses light emitted
from the atom superposed with the coherent wave ↵.

an arbitrary set of complex numbers {�⌫}, which can be easily checked. The ME

unraveling (8) consists in applying a c-number shift to the jump operator, which leaves

ME (3) invariant provided that the Rabi frequency in the Hamiltonian term is corrected

as ⌦ ! ⌦� 1
2

p
� ↵. Shifted jump operators appeared for instance in Refs. [13, 14, 15, 21].

Note that the replacement
p
� �̂� ! p

� �̂�+ i↵ tends to smooth out the e↵ect of jumps

in the sense that, when ↵ is large, a jump acts trivially on the system leaving its state

unchanged (after normalization).

We illustrate next a setup where photon counting statistics is described by

unraveling (8). To this aim, consider first a chiral waveguide (enabling light propagation

only in one direction) side-coupled with strength
p
� to a two-level atom under the

rotating wave approximation (the waveguide has linear dispersion law). The setting is

sketched in Fig. 1. A coherent, continuous-wave beam of amplitude ↵ resonant with

the atom is injected at one end of the waveguide and scatters from the emitter. Note

that there is no back-scattered light since the waveguide is chiral. Photons are counted

at a detector placed beyond the atom. Applying input-output formalism, the output

field sensed by the detector is given by âout(t) = �i
p
� �̂�(t) + ↵ [4], indicating that

it results from the coherent superposition of the incoming coherent beam and emitted

light. Accordingly, the jump operator describing photon detection coincides with L̂ in

Eq. (8) in a way that the corresponding unraveling is defined by [14]

Ĥ = 1
2

p
� ↵ �̂+ +H.c. , L̂ =

p
� �̂� + i↵ , (9)

where we absorbed a 1/
p
2⇡ factor into the definition of ↵. Note that, in light of the

ME invariance property discussed above, (9) gives rise to same unconditional dynamics

one would get with Ĥ =
p
� ↵ �̂+ +H.c. and L̂ =

p
� �̂�

Consider now the more general case that, in addition to the coherent beam along the

waveguide, a second classical drive (external to the waveguide) is applied on the atom as

Quantum jump statistics with a shifted jump operator in a chiral waveguide 4

A specific photon counting experiment consists of a quantum trajectory during which

an emitted photon is recorded at times t1, t2, ..., tK . At these times, the atom undergoes

a quantum jump to the ground state. Between two next jumps, the atom evolves

according to the non-Hermitian Hamiltonian Ĥe↵ = Ĥ � i

2 L̂
†
L̂. The deterministic

(unconditional) dynamics described by ME (1) arises by averaging over a large number

of photon counting experiments.

The number of jumpsK in a trajectory is a random variable. The counting statistics

of jumps/photon counts is defined by the knowledge of Pt(K) for any K, where Pt(K)

is the probability to get K counts within the time window [0, t] with t the detector’s

counting time. Statistical moments are given by hKni =
P1

K=0 Pt(K)Kn, with the first

and second moments in particular allowing to determine

k =
hKi
t

, Q =
hK2i � hKi2

hKi � 1 , (6)

which are the average number of counts or activity and the Mandel Q parameter,

respectively. The latter is especially important since it provides informations about

correlations of emitted photons. When Q = 0, the counting statistics is Poissonian

[Pt(K) is a Poisson distribution] witnessing no correlations between emitted photons.

Instead, Q > 0 and Q < 0 respectively correspond to a super- and sub-Poissonian

statistics the latter having no classical counterpart. Occurrence of super-Poissonian

statistics typically occurs when photons tend to bunch together (photon bunching).

Sub-Poissonian statistics is instead a signature of photon anti-bunching, hence jumps

tend to occur at well-separate times [20].

In the limit of long counting times, t ! 1, the activity and Mandel parameter for

unraveling (8) are respectively given by [9] k = 4�⌦2
/(8⌦2+�

2) and

Q = � 24�2⌦2

(8⌦2 + �2)2
. (7)

Function Q is always negative indicating occurrence of sub-Poissonian statistics and

photon anti-bunching of the emitted light.

3. Shifted-jump-operator unraveling and physical implementation

As is well-known, there are infinite sets of e↵ective Hamiltonian and jump operators in

terms of which a given ME can be expressed. Each set defines a ME unraveling and

generally gives rise to a di↵erent statistics of quantum jumps.

A class of unravelings for the resonance fluorescence ME (3) is defined by

Ĥ =
�
⌦ � 1

2

p
� ↵

�
�̂+ +H.c. , L̂ =

p
� �̂� + i↵ , (8)

where ↵ is complex (there is only one jump operator). This is a special case of the

general property [4] according to which any Lindblad ME (1) ⇢̇ = �i[Ĥ, ⇢]+
P

⌫
D(L̂⌫) ⇢

is invariant under the transformation L̂⌫ ! L̂⌫ + �⌫ , Ĥ ! Ĥ � i

2

P
⌫
(�⇤

⌫
L̂⌫ � H.c.) for
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Figure 2. Mandel Q parameter Q(s) as a function of ↵ for ⌦ = 0.1 (a), ⌦ = 0.25
(b), ⌦ = 1 (c) and ⌦ = 5 (d) (we set � = 1). Each curve was obtained through a
mesh of the s-axis and numerical diagonalization of (13), from which ✓(s) was inferred
by selecting the largest eigenvalue. The s-dependent Mandel Q parameter Q(s) was
determined using Eqs. (16) after applying the finite di↵erence method to compute the
derivatives of ✓(s).

Below the ↵=⌦/
p
� line, a region of predominantly sub-Poissonian statistics

appears (see Figs. 2(a)-(d)), which becomes more and more Poissonian for large ⌦’s

(see Fig. 2(d)). Below this sub-Poissonian region, a behavior occurs that consists in

a sharp transition from sub-Poissonian to super-Poissonian statistics as s grows from

negative to positive values. The transition sharpness is witnessed by a white curve of

Poissonian statistics clearly visible on each panel.

We in particular highlight the outcomes in Fig. 2(b) corresponding to ⌦ = �/4.

Here, in addition to ↵ = ⌦/
p
� where as discussed Q(s)=0 identically, another s-

independent behavior occurs for ↵ = 0 in which case Q(s)=� 2/3, which retrieves what

was found in Refs. [16, 24] for standard unraveling. Also, note that large portions of

the two Poissonian curves (along which Q(s) vanishes) run very close to s = 0 resulting

in two crossovers. Indeed, for ↵ & �, a pronounced crossover from super-Poissonian to

sub-Poissonian statistics occurs when passing from trajectories more active than typical


