Quantum tunneling: Applications in Quantum Information

OUTLINE:

- One- and two-particle: quantum state transfer & entanglement generation
- Many-body dynamics in quadratic models
- Applications: n-QST, quantum batteries, entanglement generation

Tony J. G. Apollaro University of Malta

Quantum State Transfer (QST)

Tranfer of the "quantum information", i.e., the quantum state, is mandatory in order to perform a QIP task.

The qubit: the elementary unit of quantum information $\ket{\Psi}=lpha\ket{0}+eta\ket{1}$

q(-t)

QST Fidelity: 80.02±0.07 %

Concurrence: 0.747 ± 0.004

Entanglement Fidelity: 78.9% ±0.1

Protocol duration 180 ns

Distance: 0.9 m

Rate: 50 kHz

A single channel for multiple QIP tasks

Motivations:

- The technological challenge of faithful quantum wire;
- The request of scalability of a quantum computer;
- The short coherence times of the coherent dynamics;
- The protection against environmental intrusions;
- The economical costs of a single quantum wire;
- •

Can perturbative couplings be helpful in this regard?

Task: Many-body quantum state transfer

Quantum Channel

Motivations:

the output of a QIP protocol is a n-qubit state transfer of multipartite entanglement many-body properties transfer Alternative Protocols: parallel/sequential use of a 1-QST use of entangled states as QC PQST QC

$$\begin{aligned} & \text{n-QST in spin chains with U(1) symmetry} \\ & \text{Senders} & \text{Channel} & \text{Receivers} \\ & \text{Senders} & \text{Channel} & \text{Receivers} \\ & \text{Senders} & \text{Channel} & \text{Receivers} \\ & \text{Senders} & \text{Sen$$

n-excitation transfer in U(1) & bilinear models

$$\mathcal{F} = \begin{pmatrix} f_1^1 & f_1^2(t) & \cdots & f_1^{N-3} & f_1^{N-1} & f_1^N & n=2 \\ f_2^1 & \cdots & \cdots & f_2^{N-3} & f_2^{N-2} & f_2^N & n=2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ f_N^1 & & \cdots & f_N^N & n=3 \\ \vdots & \ddots & & \vdots & \vdots \\ f_N^1 & & & \cdots & f_N^N & n=3 \\ \end{bmatrix}$$
n-excitation transfer amplitude is given by the determinant (permanent) of the minor for fermions (bosons).

behaviour w.r.t. transfer time and transition amplitude

n-excitation transfer in U(1) & bilinear models

For n-excitation transfer we need to maximise Ceiling[n/2] 1-particle transition amplitudes at t*

$$f_s^r(t) = \sum_{k=1}^N \langle r | e^{-it\hat{H}} | s \rangle = \sum_{k=1}^N e^{-i\omega_k t} a_{rk} a_{ks}^*$$

where N is, perturbatively, the number of resonant modes

Length of wires that are equivalent mod(number of senders) have the same behaviour w.r.t. excitation transfer

Number of Excitations	Number of Resonant Modes	Length of the wire
1	0 1	2n $2n+1$
2	0 0 2	3n $3n+1$ $3n+2$
3	0 1 0 3	$4n 4n{+}1 4n{+}2 4n{+}3$
4	0 0 0 0 4	5n $5n+1$ $5n+2$ $5n+3$ $5n+4$
5	0 1 2 1 0 5	6n $6n+1$ $6n+2$ $6n+3$ $6n+4$ $6n+5$

CONCLUSIONS

- n-QST protocol over *universal* quantum spin chain
- Perturbatively-perfect n-QST
- Applications to quantum batteries and multi-qubit bipartite entanglement generation

<u>Outlooks:</u>

- Faster (ballistic?) n-QST
- N-QST in U(1) interacting Hamiltonians
- Multipartite entanglement

Lorenzo, Apollaro, Paganelli, Palma, Plastina, Phys. Rev. A **91**, 042321 (2015) Lorenzo, Apollaro, Trombettoni, Paganelli, Int. J. Quantum Inf **15**, 1750037 (2017) Apollaro, Almeida, Lorenzo, Ferraro, Paganelli, arXiv:1812.11609

Wayne Jordan Chetcuti

Dr. Salvatore Lorenzo

Claudio Sanavio

CONCLUSIONS

- n-QST protocol over quantum spin chain
- Perturbatively-perfect n-QST

Faster (ballistic?) n-OST

 Applications to quantum batteries and multi-qubit bipartite entanglement generation

Outlooks:

N.Q.57 n.J.1) interacting Hamiltonia.
M.m. caltic entanglement.
Lier D, R. ... O II girelli, Palma, Flastina, Phys. R.V.A.91, 72211 (10.5).
Licen D, J.D.Illain, Trimpeltoni, Pagimeli, Int. J. Quantum Inf 15, 1750037 (2017).
Apollaro, Almeida, Lorenzo, Ferraro, Paganelli, arXiv:1812.11609.

Wayne Jordan Chetcuti

Dr. Salvatore Lorenzo

Claudio Sanavio

